共查询到20条相似文献,搜索用时 15 毫秒
1.
Kazuki Akamatsu Masataka Nakane Takashi Sugawara Tadashi Hattori Shin-ichi Nakao 《Journal of membrane science》2008
We have successfully developed a membrane reactor for decomposing hydrogen sulfide into hydrogen using an amorphous silica membrane for the first time. The membrane was prepared by the CVD method with tetramethoxysilane and oxygen, and showed excellent hydrogen permeance at 873 K of the order of 10−7 mol m−2 s−1 Pa−1 and high hydrogen/nitrogen permselectivity of 104. The membrane reactor constructed with our membrane and a commercially available catalyst decomposed hydrogen sulfide into hydrogen with higher conversion than the equilibrium conversion. This conversion enhancement was because of the selective extraction of hydrogen from the reaction side to the permeate side by the silica membrane. 相似文献
2.
Shin-Kun Ryi Jong-Soo Park Sung-Hyun Kim Dong-Won Kim Hyun-Keun Kim 《Journal of membrane science》2009
A diffusion-bonding procedure at a low temperature, i.e. 500 °C, based on the high mobility of silver atoms was developed with a newly designed plate-and-frame type hydrogen purification membrane module consisting of a unit cell and a housing. Two membranes made of palladium and copper sputtered on polished porous nickel supports (PNS) followed by Cu-reflow at 750 °C, respectively, were assembled in a unit cell to verify that the low temperature diffusion-bonding method could be applied to gas-tight membranes. Ring-shaped silver foils with a thickness of 50 μm were placed between the membranes and the unit cell body made of nickel plate. A pair of membranes, a pair of silver foils and the unit cell body were compressed with a pair of covers and eight screws by a 17 cm long torque wrench at 12 N m. The diffusion-bonded unit cell was welded in a module housing comprised of a feed port and a retentate port by a laser-operated welder. After the module was constructed, gas-tightness tests were carried out using helium and the measured helium leakage was 8 × 10−5 mol m−2 s−1 at 0.7 MPa, which is the same as the value detected before diffusion bonding with a Viton O-ring. The hydrogen permeation test and durability test consisting of three cycles of alternately changing the temperature and transmembrane pressure difference were carried out using a single gas, hydrogen, and it was found that the hydrogen permeation flux remained constant during the durability test and that the helium leakage did not increase after the durability test. 相似文献
3.
A thin layer (30–40 nm) of a dual-element silica–alumina composition was deposited on a porous alumina support by chemical vapor deposition (CVD) in an inert atmosphere at high temperature. Prior to CVD, an intermediate layer of γ-alumina was coated on the macroporous alumina support. The intermediate layer was prepared by the dip-coating and calcination of boehmite sols of different sizes to give a graded structure that was substantially free of defects. The resulting supported composite membrane had high permeance for hydrogen in the order of 2–3 × 10−7 mol m−2 s−1 Pa−1 at 873 K with selectivities of H2 over CH4, CO and CO2 of 940, 700 and 590, respectively. The membrane operated by a hopping mechanism involving jumps of permeating molecules between solubility sites. The presence of aluminum improved the hydrothermal stability of the membranes for periods in excess of 500 h at 873 K in 16% steam, allowing the permeance to remain above 10−7 mol m−2 s−1 Pa−1, although with decreased selectivities. 相似文献
4.
A simple and efficient protocol for N-formylation of aliphatic and heterocyclic amines has been described with formic acid in the absence of catalyst and solvent. 相似文献
5.
J.M. Rivas Mercury X. Turrillas A.H. de Aza P. Pena 《Journal of solid state chemistry》2006,179(10):2988-2997
The hydration behaviour of Ca3Al2O6, Ca12Al14O33 and CaAl2O4 with added amorphous silica at 40, 65 and 90 °C has been studied for periods ranging from 1 to 31 days. In hydrated samples crystalline phases like katoite (Ca3Al2(SiO4)3−x(OH)4x) and gibbsite, Al(OH)3, were identified, likewise amorphous phases like Al(OH)x, calcium silicate hydrates, C-S-H, and calcium aluminosilicate hydrates, C-S-A-H, were identified. The stoichiometry of Ca3Al2(SiO4)3−x(OH)4x (0?3−x?0.334), which was the main crystalline product, was established by Rietveld refinement of X-ray and neutron diffraction data and by transmission electron microscopy. 相似文献
6.
A NaOH-poisoned γ-alumina membrane with 4-nm diameter pores was used to separate CH3OH from a H2/CH3OH mixture. Between 373 and 473 K, CH3OH condensed in the pores for certain pressure ranges, and was preferentially removed through the pores. Separation factors as high as 600 for CH3OH over H2 were obtained. Capillary condensation was observed at CH3OH pressures (0.60 ± 0.05 Psat) much lower than those predicted by the Kelvin equation. Causes for the deviations are indicated. 相似文献
7.
New amorphous perfluoro polymers: perfluorodioxolane polymers for use as plastic optical fibers and gas separation membranes 下载免费PDF全文
Yoshiyuki Okamoto Qiming Du Kotaro Koike František Mikeš Timothy C. Merkel Zhenjie He Hao Zhang Yasuhiro Koike 《先进技术聚合物》2016,27(1):33-41
To address the need for perfluoro polymers with higher Tg, we have prepared and characterized various perfluorodioxolane monomers via direct fluorination of the hydrocarbon precursors. These monomers were readily polymerized in bulk or in solution initiated by perfluorodibenzoyl peroxide. The polymers obtained have relatively high Tg(~160°C) and exhibited low material dispersion. These polymers are completely amorphous and soluble in fluorinated solvents. The polymers are also chemically and thermally stable (Tg > 300°C). Thus, these perfluorodioxolane polymers may be used as plastic optical fiber material where high Tg is required, such as in automobile and aircraft application. These perfluorodioxolane polymers were also investigated for use as gas separation membrane. Among these polymers, the copolymer of perfluoro (2‐methylene‐1,3‐dioxolane) and perfluoro (2‐methylene‐4,5‐dimethyl dioxolane) showed superior gas separation performance compared with the commercial perfluoro polymers for a number of gas pair, including CO2/CH4, He/CH4, H2/CH4, and N2/CH4. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
Jianhua Tong Ryuichi Shirai Yukari Kashima Yasuyuki Matsumura 《Journal of membrane science》2005,260(1-2):84-89
A pinhole-free palladium membrane with a thickness of 3 μm has been prepared on the surface of a porous sintered stainless steel tube coated with a thin silver layer as a diffusion barrier. Filling of aluminum hydroxide gel in the surface pores of the tube is effective in preventing defect formation during electroless plating of the palladium layer, while the volume of the hydroxide beneath the membrane decreases greatly upon thermal treatment up to 500 °C. The hydrogen flux at 400–500 °C is reasonably proportional to the pressure difference between the two sides of the membrane. Addition of a 2 μm Pd0.8Ag0.2 alloy layer on the membrane by electroplating does not greatly decrease the hydrogen permeability. 相似文献
9.
A novel hybrid plasma bonding (HPB) that combines sequential plasma activation (reactive ion etching followed by microwave radicals) with anodic bonding has been developed to achieve void-free and strong silicon/glass bonding at low temperature. The interfacial voids were observed at the silicon/glass interface both in the anodic bonding and in the plasma activated anodic bonding, but the voids were completely disappeared in the HPB method at 200 °C. The bonding strength of the silicon/glass in the HPB was as high as 30 MPa at 200 °C, which was higher than that in the individual treatment of anodic and plasma activated bonding methods. The improved characteristic behavior of the interface in the HPB is attributed to the higher hydrophilicity and smooth surfaces of silicon and glass after sequential plasma activation. These highly reactive and clean surfaces enhance the mobility of alkaline cations from the glass surface across the interface toward the bulk of glass in the HPB. This transportation resulted in a ∼353 nm thick alkaline depletion layer in the glass and enlarged the amorphous SiO2 across the interface. The void-free strong bonding is attributed to the clean hydrophilic surfaces and the amorphous SiO2 layer across the interface. 相似文献
10.
B. EL Goundali M. Kaddami 《Fluid Phase Equilibria》2011,306(2):175-180
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O). 相似文献
11.
In this paper, we report on a novel electrophoretic separation and analysis method for membrane pore‐forming proteins in multilayer lipid membranes (MLMs) in order to overcome the problems related to current separation and analysis methods of membrane proteins, and to obtain a high‐performance separation method on the basis of specific properties of the lipid membranes. We constructed MLMs, and subsequently characterized membrane pore‐forming protein behavior in MLMs. Through the use of these MLMs, we were able to successfully separate and analyze membrane pore‐forming proteins in MLMs. To the best of our knowledge, this research is the first example of membrane pore‐forming protein separation in lipid membranes. Our method can be expected to be applied for the separation and analysis of other membrane proteins including intrinsic membrane proteins and to result in high‐performance by utilizing the specific properties of lipid membranes. 相似文献
12.
Hisaaki Yagi 《Polymer Degradation and Stability》2010,95(8):1349-1355
The new method to evaluate the anaerobic biodegradability of bioplastics, such as polycaprolactone (PCL) and poly (lactic acid) (PLA), under aquatic (slurry) conditions at 55 °C is applying. For this method, we prepared the sludge at 55 °C from the sludge at 37 °C by the method in which the sludge from the real tank operating at around 37 °C using cow manure and vegetable waste as the feed stock was preincubated at 55 °C. It was unknown at which stage the sludge during preincubation has the optimized anaerobic biodegradation activity of plastics. Four different stage sludges during preincubation (the sludge at 7 days after the start of preincubation at 55 °C, at 12 days, at 18 days, and at 40 days) were compared by the anaerobic biodegradation activity of PLA. The preincubated sludge at around 18 days (a gradual decrease in biogas evolution and a methane ratio over 60%) showed the highest biodegradation activity of PLA. In addition, the bacterial population in each sludge was analyzed by the denaturing gradient gel electrophoresis (DGGE) analysis of the amplified 16S rRNA gene fragments, however, the newly grown bacteria bands at 55 °C were not clearly detected. 相似文献
13.
<正>Dense ceramic membranes with protonic and electronic conductivity have attracted considerable interest in recent years.In this paper,the powders of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were synthesized via the liquid citrate method,and the membranes of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) were prepared by pressing followed by sintering.X-ray diffraction(XRD) was used to characterize the phase structure of both the powder and sintered membrane.The microstructure of the sintered membranes was studied by scanning electron microscopy(SEM).Hydrogen permeation through the SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membranes was carried out using gas permeation setup at 900℃.Hydrogen permeation flux of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membrane reaches up to 0.042 mL/ min cm~2 at H_2 partial pressure of 0.4 atm.The hydrogen permeation fluxes obtained in this paper are similar to that of SrCe_(0.95)Tm_(0.05)O_(3-δ),and Zr doping can increase mechanical strength of SrCe_(0.75)Zr_(0.20)Tm_(0.05)O_(3-δ) membranes and the resistance to reducing circumstance. 相似文献
14.
Solid–liquid equilibrium was measured for benzene + cyclohexane, trans-decahydronaphthalene + naphthalene and cis-decahydronaphthalene + naphthalene under the atmospheric pressure in the temperature range from 226.69 to 353.14 K. The apparatus was specially designed in this study, and it was based on a cooling method. The phase diagram with the complete immiscible solids was observed for the three systems, and the eutectic point was found at x2 = 0.2709 and Teu = 232.11 K for benzene + cyclohexane, x2 = 0.9816 and Teu = 241.98 K for trans-decahydronaphthalene + naphthalene, and x3 = 0.9822 and Teu = 225.74 K for cis-decahydronaphthalene + naphthalene, respectively. Hydrogen solubility was also measured for the two pure substances, trans-decahydronaphthalene and cis-decahydronaphthalene, and the three mixtures, trans-decahydronaphthalene + cis-decahydronaphthalene, trans-decahydronaphthalene + naphthalene, and cis-decahydronaphthalene + naphthalene, in the pressure range from 1.702 to 4.473 MPa at 303.15 K. Considering the solid–liquid equilibrium data, mole ratio of trans-decahydronaphthalene:cis-decahydronaphthalene was set to 50:50, and those of trans-decahydronaphthalene + naphthalene, and cis-decahydronaphthalene + naphthalene to 85:15. The hydrogen solubility increased linearly with the pressure following the Henry's law for all systems. The experimental solubility data were correlated or predicted with the Peng–Robinson equation of state [D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam. 15 (1976) 59–64; R. Stryjek, J.H. Vera, Can. J. Chem. Eng. 64 (1986) 323–333]. 相似文献
15.
NaA zeolite membranes were synthesized on an asymmetric porous alumina support with a lower mass-flow resistance for development of more economically feasible membranes with higher permeation performance. The support influence on permeation fluxes through the membrane using asymmetric support was investigated by vapor permeation at 100–145 °C in a mixture of water (10 wt.%)/ethanol (90 wt.%) in which the higher permeation fluxes up to 37 kg m−2 h−1 or water permeances up to 3.2 × 10−6 mol m−2 s−1 Pa−1at 145 °C were observed. The performance was higher than those in the previously reported NaA membrane on a monolayer porous alumina support of 31 kg m−2 h−1 or water permeances of 2.5 × 10−6 mol m−2 s−1 Pa−1at 145 °C. These results are experimental evidence to show the effect of asymmetric support utilization in membrane preparation on the higher membrane performance. The estimate of the pressure drop over the both types of support indicates that the improvement of higher permeation fluxes in the asymmetric type membrane could be attributed to the suppression of pressure drop in the support layer due to lower mass-flow resistance there. 相似文献
16.
Sabina K. Gade E. Andrew Payzant Helen J. Park Paul M. Thoen J. Douglas Way 《Journal of membrane science》2009,340(1-2):227-233
The addition of gold to palladium membranes produces many desirable effects for hydrogen purification, including improved tolerance of sulfur compounds, reduction in hydride phase formation, and, for certain compositions, improved hydrogen permeability. The focus of this work is to determine if sequential plating can be used to produce self-supported alloy membranes with equivalent properties to membranes produced by conventional metallurgical techniques such as cold-working.Sequential electroplating and electroless plating were used to produce freestanding planar Pd–Au membranes with Au contents ranging from 0 to 20 wt%, consisting of Au layers on both sides of a pure Pd core. Membranes were characterized by single-gas permeation measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), and high temperature, controlled-atmosphere XRD (HTXRD). Sequentially plated foils tested without any prior annealing had significantly lower H2 permeabilities than either measured or literature values for homogeneous foils of equivalent composition. This effect appears to be due to the formation of stable gold-enriched surface layers. Pretreatment of membranes to 1023 K created membranes with hydrogen permeabilities equivalent to literature values, despite the fact that trace amounts of surface gold remained detectable with XRD. 相似文献
17.
Francesco Crea 《Thermochimica Acta》2004,414(2):185-189
We report the results of a calorimetric study on the hydrolysis of UO22+ in different ionic media (NaClO4 aq, NaClaq) at 25 °C. Experiments in NaCl were performed at different ionic strength, at I≤1 mol l−1. The species considered in both ionic media were UO2(OH)+, (UO2)2(OH)22+ and (UO2)3(OH)5+, and in addition (UO2)3(OH)42+ and (UO2)3(OH)7− in NaClaq. The dependence on ionic strength of enthalpy changes in NaClaq was expressed by the simple linear equation ΔHpq=ΔH°pq+aI1/2 (a, empirical parameter). Comparison with literature findings is given and some recommended values are reported. 相似文献
18.
Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation 总被引:2,自引:0,他引:2
J. Sunarso S. Baumann J.M. Serra W.A. Meulenberg S. Liu Y.S. Lin J.C. Diniz da Costa 《Journal of membrane science》2008,320(1-2):13-41
Although Nernst observed ionic conduction of zirconia–yttria solutions in 1899, the field of oxygen separation research remained dormant. In the last 30 years, research efforts by the scientific community intensified significantly, stemming from the pioneering work of Takahashi and co-workers, with the initial development of mixed ionic–electronic conducting (MIEC) oxides. A large number of MIEC compounds have been synthesized and characterized since then, mainly based on perovskites (ABO3−δ and A2BO4±δ) and fluorites (AδB1−δO2−δ and A2δB2−2δO3), or dual-phases by the introduction of metal or ceramic elements. These compounds form dense ceramic membranes, which exhibit significant oxygen ionic and electronic conductivity at elevated temperatures. In turn, this process allows for the ionic transport of oxygen from air due to the differential partial pressure of oxygen across the membrane, providing the driving force for oxygen ion transport. As a result, defect-free synthesized membranes deliver 100% pure oxygen. Electrons involved in the electrochemical oxidation and reduction of oxygen ions and oxygen molecules respectively are transported in the opposite direction, thus ensuring overall electrical neutrality. Notably, the fundamental application of the defect theory was deduced to a plethora of MIEC materials over the last 30 years, providing the understanding of electronic and ionic transport, in particular when dopants are introduced to the compound of interest. As a consequence, there are many special cases of ionic oxygen transport limitation accompanied by phase changes, depending upon the temperature and oxygen partial pressure operating conditions. This paper aims at reviewing all the significant and relevant contribution of the research community in this area in the last three decades in conjunction with theoretical principles. 相似文献
19.
Sujuan GuoHiroaki Yoshioka Hiroshi KakehiYoshihiro Kato Masashi MiuraNorifumi Isu Bruno AmeduriHideo Sawada 《Journal of colloid and interface science》2012,387(1):141-145
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [RF-(VM)n-RF] underwent the sol-gel reaction under alkaline conditions in the presence of anatase titanium oxide nanoparticles (an-TiO2) in tetrahydrofuran to give the corresponding fluorinated oligomer/anatase titanium oxide nanocomposites [RF-(VM-SiO2)n-RF/an-TiO2]. Crystalline structure of an-TiO2 in the nanocomposites thus obtained was found to keep completely its structure without phase transformation to rutile even after calcination at 1000 °C, although crystalline structure of the original an-TiO2 nanoparticles underwent a complete phase transformation to the rutile under similar conditions. Interestingly, RF-(VM-SiO2)n-RF/an-TiO2 nanocomposites before and after calcination at 1000 °C exhibited the similar photocatalytic activity for the decolorization of methylene blue under UV light irradiation. 相似文献
20.
For diarylvinylidenecyclopropanes 1 having two aromatic groups at C-1 position and one methyl group at the C-2 position of cyclopropyl ring, the reaction with bromine at low temperature (−100 °C) produces the brominated indene derivatives 2 and conjugated triene derivatives 3 in high yields in dichloromethane and ether within 10 min, respectively. This drastic solvent effect has been discussed on the basis of previous investigation. 相似文献