首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flux behavior of 0.2 μm nylon, polysulfone (PS), polyvinylidene fluoride (PVDF) and polyethersulfone (PES) membranes was examined during dead-end microfiltration of commercial apple juice. On nylon membranes, a 0.1 μm thick surface fouling layer rapidly formed that acted as a secondary membrane. The colloidal particles retained by this surface layer aggregated to form a thick loose gel structure, producing an anisotropic fouling structure. In contrast, the 4 μm thick surface fouling layer of PES was slower to form and had a more open structure with a lower flux resistance per unit thickness. The morphology of the PES surface layer also did not differ dramatically from the loose gel structure that subsequently formed on top of this secondary membrane. The PS surface fouling layer was similar in structure to nylon whereas the PVDF layer more closely resembled that found with PES. The density of the surface fouling layer did not directly correlate to membrane surface hydrophobicity or pure water flux. Atomic force microscopy (AFM) indicated that surface roughness strongly influenced surface fouling layer morphology. The membrane surface appears to act as a template for the fouling process; therefore, smooth membranes (nylon and PS) produce a dense surface fouling layer whereas this same layer on rough membranes (PES and PVDF) is much more open. Consequently, the fluxes of PES and PVDF membranes are less affected by fouling formation.  相似文献   

2.
温亦兴 《广州化学》2013,38(2):48-56
采用磺化方法制备磺化聚碳酸酯型离聚体。用傅立叶变换红外光谱(FT-IR)、差示扫描量热仪(DSC)、热重分析(TG)、紫外光老化分析测试,研究不同金属离子对磺化聚碳酸酯型离聚体性能的影响。结果表明,SPC的玻璃化转变温度相对于纯PC有所下降;离聚体的热稳定性温度高低顺序为SPC-Cu>SPC>SPC-Mg>SPC-Ca;耐老化性能为SPC>SPC-Cu>SPC-Mg>SPC-Ca;未提纯的离子型SPC比提纯的SPC耐老化性能好。  相似文献   

3.
以过氧化苯甲酰(BPO)作引发剂,通过溶液接枝聚合法把苯乙烯/丙烯酸同时接枝到原硅酸钠改性的聚偏氟乙烯(PVDF)膜上,磺化后得到聚偏氟乙烯接枝磺化聚(苯乙烯-co-丙烯酸)膜(PVDF-g-P(SSA-co-AA)).研究了苯乙烯和丙烯酸的不同比例对膜的接枝反应及其相对湿度对膜电导率和含水量的影响.用傅立叶变换红外光谱(FTIR)检测原硅酸钠改性的PVDF膜经过接枝和磺化后所发生的结构变化,并用扫描电镜(SEM)观察PVDF膜接枝前后的形貌以及接枝磺化后产物PVDF-g-P(SSA-co-AA)膜的形貌及硫和硅分布.结果表明,原硅酸钠改性的PVDF膜与苯乙烯/丙烯酸同时发生接枝聚合反应,环境的相对湿度在20%~80%范围,对添加10wt%Na4SiO4的PVDF-g-P(SSA-co-AA)膜的电导率的影响基本不变,并达到0.0198S·cm-1.原硅酸钠改性的PVDF膜结构在接枝前后和磺化前后发生变化,确认磺化反应不只是在膜表面,同时渗入膜中进行.  相似文献   

4.
改性聚偏氟乙烯接枝共混聚苯乙烯磺酸膜的制备与性能   总被引:1,自引:0,他引:1  
将苯乙烯添加到溶有原硅酸钠改性的聚偏氟乙烯(PVDF)N-甲基吡咯烷酮溶液中, 以过氧化苯甲酰(BPO)作引发剂, 苯乙烯直接接枝到原硅酸钠改性的PVDF链上, 成膜后磺化制备了聚偏氟乙烯接枝苯乙烯(PVDF-g-PSSA)膜. 采用傅立叶变换红外光谱(FT-IR)、扫描电镜(SEM)、能量扩散X射线(EDX)和多功能材料实验机表征了膜的结构、形貌及硫和硅的分布、机械强度、溶胀度, 使用阻抗分析和气相色谱仪研究了苯乙烯含量(w)对PVDF-g-PSSA膜的质子导电性能和阻醇性能的影响. 结果表明, 苯乙烯加入后, 原硅酸钠改性的PVDF与苯乙烯进行接枝共聚反应, 苯乙烯磺化反应不只是在膜表面进行, 同时渗入到膜中进行, 机械性能得到了改善. 质子电导率(σ)随苯乙烯质量分数的提高而升高. Na4SiO4为8%和苯乙烯为20%的PVDF-g-PSSA膜, 在25 ℃时溶胀度仅为20.4%, 甲醇透过系数在10-7 cm2·s-1数量级上, 比Nafion115膜的低一个数量级. 该膜具有较高的选择性, 在直接甲醇燃料电池中具有良好的应用前景.  相似文献   

5.
Adsorption of proteins and the effect of the chemical nature of membrane surfaces on protein adsorption were investigated using14C-tagged albumin and several microporous membranes (polyvinilydene fluoride, PVDF; nylon; polypropylene, PP; and polycarbonate, PC). The membrane surfaces were modified by exposing them to low-temperature plasma of several different monomers (n-butane, oxygen, nitrogen alone or as mixtures) in a radiofrequency plasma reactor. Transients in the permeability of albumin solutions through the membranes and changes in flux of distilled water through the membranes before and after adsorption of albumin were used to investigate the role of protein adsorption on membrane fouling. The results show that the extent of adsorption of albumin on hydrophobic membranes was considerably more than that on hydrophilic membranes. The hydrophilic membranes were susceptible to electrostatic interactions and less prone to fouling. A pore-blocking model was successfully used to correlate the loss of water flux through pores of defined geometry  相似文献   

6.
Herein, functionalized graphene oxide (GO) was prepared by the covalent functionalization with amino acids (lysine, glycine, glutamic acid and tyrosine) in this study. Zeta potential results demonstrated that covalent functionalization of GO with amino acids was favourable for their homogeneous dispersion in water and organic solvents. Based on the higher absolute value of zeta potential and the better dipersion stability of GO-lysine, the PVDF/GO-lysine hybrid membranes were then prepared via the phase inversion induced by immersion precipitation technique. SEM images showed a better pore diameter and porosity distribution on the PVDF/GO-lysine membrane surface. The zeta potential absolute value of the PVDF/GO-lysine membrane surface was higher than that of the virgin PVDF membrane. Furthermore, the PVDF/GO-lysine membranes surface exhibited good hydrophilicity. The water flux of PVDF/GO-lysine membranes can reach to two times of that of the virgin PVDF membrane. And the BSA adsorbed amount on PVDF/GO-lysine surface was decreased to 0.82 mg/cm2 for PVDF/GO-lysine-8% membrane. Filtration experiment results indicated that the fouling resistance was significantly improved for the PVDF/GO-lysine membranes. As a result, lysine functionalized GO will provide a promising method to fabricate graphene oxide based hybrid membranes with effective antifouling property and hydrophilicity.  相似文献   

7.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

8.
聚偏氟乙烯-磺化聚醚砜相容性及其成膜性能   总被引:2,自引:1,他引:1  
研究了聚偏氟乙烯(PVDF)-磺化聚醚砜(SPES)的相容性及其成膜性能.首先通过溶解度参数、粘度法和目测法研究共混溶液的相容性,接着采用浊度法测定了共混溶液的热力学性质,最后采用浸没沉淀法制备了共混膜并探讨了成膜性能.结果显示,PVDF和SPES为部分相容体系,随着SPES含量的增加,共混溶液相容性逐渐减小,当SPES含量增加到50wt%时,体系发生分相.共混溶液的成膜性能良好,SPES含量增加有利于体系发生液液分相,生成高孔隙率膜,并且极大的提高了PVDF膜的亲水性和水通量.  相似文献   

9.
Polyacrylonitrile (PAN) was blended with polyvinylidine fluoride (PVDF) at various ratios and made into membranes. The hemocompatibility of the resulting membranes was evaluated based on human plasma proteins adsorption, platelet adhesion, thrombus formation, and blood coagulation time. The PAN/PVDF blends exhibited partial miscibility according to the inward shifting of their two glass transition temperatures. The microstructures of blend membranes examined using atomic force microscopy (AFM) indicated that the roughness increased with the PVDF content, and the phase separation was too severe to form a membrane when the PVDF content was more than 30%. The water contact angle of PAN/PVDF blend membranes increased with the PVDF content. By blending with 20 wt% apolar PVDF the adsorption of blood proteins could be reduced, and hence the platelet adhesion and thrombus formation was also reduced. However, when the PVDF content was 30 wt%, severe thrombogenicity was observed due probably to the more porous structure of blend membrane. These results demonstrated that the hemocompatibility would be improved for PAN/PVDF blend membranes with appropriate hydrophilicity and roughness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Polystyrene sulfonic acid (PSSA) pore-filled poly(vinylidene fluoride) (PVDF) membranes have been prepared using simultaneous electron irradiation method. Porous PVDF films were grafted by pre-swelling in styrene solution and subsequent irradiation with an electron beam (EB) under nitrogen atmosphere and at ambient temperature. The grafted films i.e. polystyrene (PS) pore-filled PVDF were subsequently sulfonated with a diluted mixture of chlorosufonic acid. The effects of the reaction parameters on the content of PS grafted in the pores of PVDF films were investigated. The chemical and morphological properties of the membranes in comparison with their un-grafted and grafted counterparts were studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The transport properties of these membranes such as ionic conductivity and methanol permeability were evaluated and correlated with the content of PS grafted in the pores of the PVDF films. The PSSA pore-filled PVDF membranes with PS content in the pores of 40% and above showed superior performance characteristics compared to Nafion 117 membrane and therefore can be potential alternatives to improve the performance of direct methanol fuel cell (DMFC).  相似文献   

11.
《先进技术聚合物》2018,29(8):2287-2299
There is a huge demand especially for polyvinylidene fluoride (PVDF) and its copolymers to provide high performance solid polymer electrolytes for use as an electrolyte in energy supply systems. In this regard, the blending approach was used to prepare PVDF‐based proton exchange membranes and focused on the study of factor affecting the ir proton conductivity behavior. Thus, a series of copolymers consisting of poly (methyl methacrylate) (PMMA), polyacrylonitrile (PAN), and poly(2‐acrylamido‐2‐methyl‐l‐propanesulfonic acid) (PAMPS) as sulfonated segments were synthesized and blended with PVDF matrix in order to create proton transport sites in PVDF matrix. It was found that addition of PMMA‐co‐PAMPS and PAN‐co‐PAMPS copolymers resulted in a significant increase in porosity, which favored the water uptake and proton transport at ambient temperature. Furthermore, crystallinity degree of the PVDF‐based blend membranes was increased by addition of the related copolymers, which is mainly attributed to formation of hydrogen bonding interaction between PVDF matrix and the synthesized copolymers, and led to a slight decrease in proton conductivity behavior of blend membranes. From impedance data, the proton conductivity of the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes increases to 10 and 8.4 mS cm−1 by adding only 50% of the related copolymer (at 25°C), respectively. Also, the blend membranes containing 30% sulfonated copolymers showed a power density as high as 34.30 and 30.10 mW cm−2 at peak current density of 140 and 79.45 mA cm−2 for the PVDF/PMMA‐co‐PAMPS and PVDF/PAN‐co‐PAMPS blend membranes, respectively. A reduction in the tensile strength was observed by the addition of amphiphilic copolymer, whereas the elongation at break of all blend membranes was raised.  相似文献   

12.
The fouling tendency, due to adsorption on the pore walls, of two pairs of modified and unmodified ultrafiltration membranes, with similar observed retentions determined by dextran and gel permeation chromatography, was studied. The membranes investigated were made of modified and unmodified polyaramide (PA) and modified and unmodified polyvinylidene fluoride (PVDF). The PVDF membrane was surface-modified and the PA membrane was made from a modified polymer solution. Membrane modification was used to reduce fouling by adsorption. Octanoic acid was used as the fouling substance, representing a large number of small, hydrophobic compounds. It is demonstrated in this investigation that membrane modification is not always successful. It was determined that at lower concentrations of octanoic acid, the modified PA membrane exhibits a smaller fouling tendency than the unmodified PA membrane, while the result is reversed for concentrations above 60% of the saturation concentration. The fouling tendency of the unmodified PVDF membrane is much lower than that of the modified PVDF membrane at all concentrations. The cross-sections of the membranes were visually examined with scanning electron microscopy, but no difference could be observed between the modified and unmodified membranes. The membranes were also examined with Fourier transform infrared spectroscopy. The spectra of the two PA membranes were different, while no difference was observed for the unmodified and surface-modified PVDF membranes. Remains of octanoic acid were found in the membranes, although they had been thoroughly rinsed with deionized water and the initial pure water flux was recovered.  相似文献   

13.
A novel hydrophilic nanocomposite additive (PVP-g-MMT), coupling of hydrophilic modifier, self-dispersant, and pore-forming agent (porogen), was synthesized by the surface modification of montmorillonite (MMT) with N-vinylpyrrolidone (NVP) via "grafting from" polymerization in the presence of H(2)O(2)-NH(3)·H(2)O as the initiator, and then the nanocomposite membrane of poly(vinylidene fluoride) (PVDF) and PVP-g-MMT was fabricated by wet phase inversion onto clean glass plates. The existence and dispersion of PVP-g-MMT had a great role on structures, morphologies, surface composition, and chemistry of the as-prepared nanocomposite membranes confirmed by varieties of spectroscopic and microscopic characterization techniques, all of which were the correlated functions of PVP-g-MMT content in casting solution. By using the dead-end filtration of protein aqueous solution, the performance of the membrane was evaluated. It was seen that all of the nanocomposite membranes showed obvious improvement of water flux and proper BSA rejection ratio, compared to the control PVDF membrane. Meanwhile, dynamic BSA fouling resistance and flux recovery properties were also greatly enhanced due to the changes of surface hydrophilicity and morphologies. All the experimental results indicated that the as-prepared PVDF nanocomposite membranes showed better separation performances than the control PVDF membrane. Hopefully, the demonstrated method of hydrophilic nanocomposite additive synthesis would be applied for commonly hydroxyl group-containing inorganic nanoparticles, which was favorable to fabricate hydrophilic nanoparticle-enhanced polymer membranes for water treatment.  相似文献   

14.
This paper describes the preparation and electrochemical properties of new proton conducting polymer membranes, sulfonated poly(fluorenyl ether) membrane-containing perfluorocyclobutane (PFCB) moieties for fuel cell applications. The sulfonated polymers were prepared via thermal cyclodimerization of 9,9-bis(4-trifluorovinyloxyphenyl)fluorene and subsequent post-sulfonation using chlorosulfonic acid (CSA) as a sulfonating agent. The post-sulfonation reaction was carried out by changing the molar ratio of CSA/repeating unit of the polymer at room temperature for 5 h and the resulting sulfonated polymers showed different degrees of sulfonation (DS) and ion exchange capacities (IEC). With the increment of CSA content, the DS, IEC and water uptake of the sulfonated polymer membranes increased. Their proton conductivity was investigated as a function of temperature. The polymer membrane with an IEC value of 1.86 mmol/g showed a water content of 25% similar to Nafion-115's but showed higher proton conductivity than Nafion-115 over the temperature 25–80 °C. The polymer membrane with lower water uptake and higher IEC showed similar proton conductivity and methanol permeability to Nafion-115. These results confirmed that the sulfonated poly(fluorenyl ether)-containing PFCB groups could be a promising material for fuel cell membranes.  相似文献   

15.
Novel ultrafiltration membranes were prepared by simple blending of polyethersulfone (PES) and soybean phosphatidylcholine (SPC). X-ray photoelectron spectroscopy (XPS) and water contact angle measurements indicated SPC enrichment at the membrane surfaces. The immobilization and arrangement of PC groups at surfaces rendered the membranes more hydrophilic. BSA adsorption amount decreased from 56.2 μg/cm2 for SPC-free PES membrane to 2.4 μg/cm2 for PES/SPC blend membrane. The fouling-resistant property of the blend membranes was improved considerably with an increase of SPC content while the pure water permeation flux decreased remarkably. Using PEG/PVP mixture instead of PEG as pore-forming agent increased pure water flux of PES/SPC blend membrane to some extent.  相似文献   

16.
A nanocomposite membrane of sulfonated montmorillonite/sulfonated poly(ether ether ketone) (SMMT/SPEEK) is proposed for direct methanol fuel cells (DMFCs). The SMMT is clay modified with silane of which the structure consists of a sulfonic acid group for proton conductivity improvement. The micro- and nano-scaled morphologies of the membranes perform the increase in inorganic aggregation with SMMT loading content as confirmed by SEM and AFM. The membrane stability, i.e., the liquid uptake in water and in methanol aqueous solution, as well as the mechanical stability increases with the SMMT loading content whereas thermal stability does not improve significantly. The methanol permeability reduction is obtained when the SMMT loading content increases for various methanol concentrations (1.5–4.5 M). A comparative study of the SPEEK nanocomposite membranes with SMMT and with pristine MMT shows fourfold proton conductivity enhancement after sulfonation. The DMFC single cell tests inform us that all nanocomposite membranes give the significant performance revealed by the plot of current density–voltage and power density.  相似文献   

17.
In order to improve the antifouling performance of PVDF membrane, a novel zinc sulfide/graphene oxide/polyvinylidene fluoride (ZnS/GO/PVDF) composite membrane was prepared by immersed phase inversion method. The surface morphology, crystal structure, photocatalytic activity, and antifouling property of the as‐prepared membranes were systematically studied. Results showed that the ZnS/GO/PVDF hybrid membranes were successfully fabricated with uniform surface. The hybrid membrane surface possessed higher hydrophilicity with water contact angle decreasing from 77.1° to 62.2°. The permeability of the hybrid membrane was therefore enhanced from 222.9 to 326.1 L/(m2 hour). Moreover, bovine serum albumin (BSA) retention experiment showed that the hybrid membrane separation was also promoted by 7.2%. The blending of ZnS and GO enhanced the hydrophilic and photocatalytic performances of PVDF membrane, which mitigated the membrane fouling effectively. This novel hybrid membrane could accelerate the practical application of photocatalytic technology in membrane separation process.  相似文献   

18.
车全通  王东  何荣桓 《应用化学》2009,26(9):1015-1018
合成了无机质子导体SnP2O7,测定了其从室温到250 ℃不加湿条件下的电导率,170 ℃时,SnP2O7的电导率最高为0.053 S/cm。通过溶液浇铸法,分别制备了SnP2O7与聚偏氟乙烯 (PVDF) 及磺化聚醚醚酮 (SPEEK) 的复合膜。210 ℃时,SnP2O7质量分数为60%的SnP2O7/PVDF和SnP2O7/SPEEK复合膜的电导率分别为9.2×10-5 S/cm及9.3×10-5 S/cm。对SnP2O7及其复合膜的质子传导机理,进行了初步探讨。测定了复合膜的机械强度,130 ℃时SnP2O7/PVDF的断裂拉伸强度明显优于SnP2O7/SPEEK复合膜。  相似文献   

19.
Poly(vinylidene fluoride) (PVDF) membranes were hydrophilic modified with hydroxyl group terminated hyperbranched poly(amine‐ester) (HPAE). Fourier transform infrared spectroscopy (FT‐IR) was used to study the chemical change of PVDF membranes. X‐ray photoelectron spectroscopy (XPS) indicated that some HPAE molecules were retained in PVDF membrane through polymer chain coiling. The presence of HPAE would improve the hydrophilicity of PVDF membrane. Scanning electron microscopy (SEM) was employed to characterize the morphology of different membranes. The thermodynamic stability for PVDF/DMAc/HPAE/Water system was characterized by the determination of the gelation values. Precipitation kinetics for PVDF/DMAc/HPAE/Water system was studied by precipitation time measurement. The water contact angle indicated that the hydrophilicity and the biocompatibility corresponding to protein adsorption of PVDF membrane were improved significantly after blending with hydrophilic HPAE molecules. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A new class of sulfonated poly(fluorene-co-sulfone)ether membranes containing perfluorocyclobutane (PFCB) groups were synthesized and characterized in terms of their electrochemical properties as proton exchange membranes for fuel cells. Two monomers, 9,9-bis(4-trifluorovinyloxyphenyl)fluorene and 4,4′-sulfonyl-bis(trifluorovinyloxy)biphenyl were synthesized and statistically copolymerized by thermal [2π + 2π] cycloaddition to yield a series of polymers containing 0–60 mol% of fluorenyl content (PFS-X). The copolymers were then sulfonated using chlorosulfonic acid to afford five kinds of ionomers with different sulfonation levels (SPFS-X), which were cast into membranes and analyzed in terms of electrochemical properties. It was found that the ion exchange capacity (IEC), water uptake, proton conductivity and methanol permeability values of SPFS-X increased with the increment of the sulfonated fluorenyl content. The proton conductivities of SPFS-50 and -60 with high IECs and water uptake values were higher than those of Nafion-115 between 25 and 80 °C. The methanol permeability of SPFS-X was considerably lower than that of Nafion-115.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号