首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mirror dark matter is a dissipative and self-interacting multiparticle dark matter candidate which can explain the DAMA, CoGeNT and CRESST-II direct detection experiments. This explanation requires photon–mirror photon kinetic mixing of strength ?∼10−9?109. Mirror dark matter with such kinetic mixing can potentially leave distinctive signatures on the CMB anisotropy spectrum. We show that the most important effect of kinetic mixing on the CMB anisotropies is the suppression of the height of the third and higher odd peaks. If ??10−9??109 then this feature can be observed by the PLANCK mission in the near future.  相似文献   

2.
We propose a cavity experiment to search for low mass extra U(1) gauge bosons with gauge-kinetic mixing with the ordinary photon, so-called paraphotons. The setup consists of two microwave cavities shielded from each other. In one cavity, paraphotons are produced via photon–paraphoton oscillations. The second, resonant, cavity is then driven by the paraphotons that permeate the shielding and reconvert into photons. This setup resembles the classic “light shining through a wall” setup. However, the high quality factors achievable for microwave cavities and the good sensitivity of microwave detectors allow for a projected sensitivity for photon–paraphoton mixing of the order of χ∼10−1210−8χ10−1210−8, for paraphotons with masses in the μeV to meV range—exceeding the current laboratory and astrophysics-based limits by several orders of magnitude. Therefore, this experiment bears significant discovery potential for hidden sector physics.  相似文献   

3.
A neutral Dirac fermion ψ   with a nonzero magnetic dipole moment is supplied as a singlet within the context of the standard model and is considered as a dark matter candidate near the electroweak scale (10–1000 GeV101000 GeV). We discuss its dynamics with the ordinary matters through the magnetic dipole moment. The magnetic dipole moment constrained by the relic abundance may be as large as 10−1810−17e⋅cm10181017ecm. We show that the elastic scattering is due to a spin–spin interaction for the direct detections and the predictions are under experimental exclusion limits of the current direct detectors, XENON10 and CDMS II, and consider the possibility of dark matter detection in the future.  相似文献   

4.
We analyze the first two years of data from the Fermi Gamma Ray Space Telescope from the direction of the inner 10° around the Galactic Center with the intention of constraining, or finding evidence of, annihilating dark matter. We find that the morphology and spectrum of the emission between 1.25° and 10° from the Galactic Center is well described by the processes of decaying pions produced in cosmic ray collisions with gas, and the inverse Compton scattering of cosmic ray electrons in both the disk and bulge of the Inner Galaxy, along with gamma rays from known points sources in the region. The observed spectrum and morphology of the emission within approximately 1.25° (∼175 parsecs) of the Galactic Center, in contrast, departs from the expectations for by these processes. Instead, we find an additional component of gamma ray emission that is highly concentrated around the Galactic Center. The observed morphology of this component is consistent with that predicted from annihilating dark matter with a cusped (and possibly adiabatically contracted) halo distribution (ρ∝r−γρrγ, with γ=1.18γ=1.18 to 1.33). The observed spectrum of this component, which peaks at energies between 1–4 GeV (in E2E2 units), can be well fit by a 7–10 GeV dark matter particle annihilating primarily to tau leptons with a cross section in the range of 〈σv〉=4.6×10−27σv=4.6×1027 to 5.3×10−26 cm3/s5.3×1026 cm3/s, depending on how the dark matter distribution is normalized. We also discuss other sources for this emission, including the possibility that much of it originates from the Milky Way?s supermassive black hole.  相似文献   

5.
For a deconfining thermal SU(2) Yang–Mills plasma we discuss the role of (anti)calorons in introducing non-thermal behavior effectively described in terms of Planck’s quantum of action ??. This non-thermality cancels exactly between the ground-state estimate and its free quasiparticle excitations. Kinematic constraints in 4-vertex scattering and the counting of radial loop variables versus the number of independent constraints on them are re-visited. Next, we consider thermal 2→222 one-loop scattering of the modes remaining massless upon the (anti)caloron induced adjoint Higgs mechanism (thermal ground state after spatial coarse graining). Starting with stringent analytical arguments, we are able to exclude the contribution to photon–photon scattering from diagrams containing at least one three-vertex and, in a next step, a vast majority of all possible configurations involving two four-vertices. By numerical analysis we show that the remaining contribution of the overall S channel is severely suppressed compared those of the T and U channels, meaning that the creation of a pair of massive vector modes by a pair of photons and vice versa practically does not occur in the Yang–Mills plasma. For the T and U channels the domain of loop integration represents less than 10−7107 times the volume of the unconstrained integration region. The thus introduced photon–photon correlation should affect the Cosmic Microwave Background’s polarization at low redshift. An adaption of the here-developed methods to the analysis of irreducible bubble diagrams could prove the conjecture of hep-th/0609033 on the termination of the loop expansion of thermodynamical quantities at a finite irreducible order.  相似文献   

6.
In this note, we propose a new model of agegraphic dark energy based on the Károlyházy relation, where the time scale is chosen to be the conformal time η   of the Friedmann–Robertson–Walker (FRW) universe. We find that in the radiation-dominated epoch, the equation-of-state parameter of the new agegraphic dark energy wq=−1/3wq=1/3 whereas Ωq=n2a2Ωq=n2a2; in the matter-dominated epoch, wq=−2/3wq=2/3 whereas Ωq=n2a2/4Ωq=n2a2/4; eventually, the new agegraphic dark energy dominates; in the late time wq→−1wq1 when a→∞a, and the new agegraphic dark energy mimics a cosmological constant. In every stage, all things are consistent. The confusion in the original agegraphic dark energy model proposed in [R.G. Cai, Phys. Lett. B 657 (2007) 228, arXiv: 0707.4049 [hep-th]] disappears in this new model. Furthermore, Ωq?1Ωq?1 is naturally satisfied in both radiation-dominated and matter-dominated epochs where a?1a?1. In addition, we further extend the new agegraphic dark energy model by including the interaction between the new agegraphic dark energy and background matter. In this case, we find that wqwq can cross the phantom divide.  相似文献   

7.
In the anomaly-mediated supersymmetry (SUSY) breaking scenario, neutral gaugino of SUL(2)SU(2)L multiplet, Wino, can be the lightest SUSY particle and become a candidate for dark matter. We calculated scattering cross section of Wino dark matter with nucleon, which is responsible for direct detection of the dark matter, on the assumption that the SUSY particles and the heavier Higgs bosons have masses of the order of the gravitino mass in the SUSY standard model. In such a case, the Wino–nucleon coupling is generated by loop processes. We have included two-loop contribution to Wino–gluon interaction in the calculation, since it is one of the leading contributions to the Wino–nucleon coupling. It was found that the spin-independent scattering cross section with proton is 10−(46–48) cm210(4648) cm2. While it is almost independent of the Wino mass, the result is quite sensitive to the Higgs boson mass due to the accidental cancellation.  相似文献   

8.
Using nonadiabatic quasiparticle calculations we reproduce the experimental half-life for proton radioactivity in 121Pr assuming that the decaying state has angular momentum Jπ=7/2Jπ=7/2, thus showing for the first time clear evidence for partial rotation alignment in a proton emitting nucleus. The treatment of the pairing interaction in the BCS approach produces profound changes in the ordering of energy levels, and at high deformation, the state 7/27/2 coming from the h11/2h11/2 spherical shell becomes the bandhead.  相似文献   

9.
10.
11.
12.
We investigate the photon emission from the electrosphere of a quark star. It is shown that at temperatures T∼0.1–1 MeVT0.11 MeV the dominating mechanism is the bremsstrahlung due to bending of electron trajectories in the mean Coulomb field of the electrosphere. The radiated energy flux from this mechanism exceeds considerably both the contribution from the bremsstrahlung due to electron–electron interaction and the tunnel e+ee+e pair creation.  相似文献   

13.
14.
15.
Considering gravitino dark matter scenarios with a long-lived charged slepton, we show that collider measurements of the slepton mass and its lifetime can probe not only the gravitino mass but also the post-inflationary reheating temperature TRTR. In a model independent way, we derive upper limits on TRTR and discuss them in light of the constraints from the primordial catalysis of 6Li through bound-state effects. In the collider-friendly region of slepton masses below 1 TeV, the obtained conservative estimate of the maximum reheating temperature is about TR=3×109 GeVTR=3×109 GeV for the limiting case of a small gluino–slepton mass splitting and about TR=108 GeVTR=108 GeV for the case that is typical for universal soft supersymmetry breaking parameters at the scale of grand unification. We find that a determination of the gluino–slepton mass ratio at the Large Hadron Collider will test the possibility of TR>109 GeVTR>109 GeV and thereby the viability of thermal leptogenesis with hierarchical heavy right-handed Majorana neutrinos.  相似文献   

16.
Several models of dark matter motivate the concept of hidden sectors consisting of SU(3)C×SU(2)L×U(1)YSU(3)C×SU(2)L×U(1)Y singlet fields. The interaction between our and hidden matter could be transmitted by new abelian U(1)U(1) gauge bosons AA mixing with ordinary photons. If such AA?s with the mass in the sub-GeV range exist, they would be produced through mixing with photons emitted in decays of η   and ηη neutral mesons generated by the high energy proton beam in a neutrino target. The AA?s would then penetrate the downstream shielding and be observed in a neutrino detector via their A→e+eAe+e decays. Using bounds from the CHARM neutrino experiment at CERN that searched for an excess of e+ee+e pairs from heavy neutrino decays, the area excluding the γ−AγA mixing range 10−7???10−4107???104 for the AA mass region 1?MA?500 MeV1?MA?500 MeV is derived. The obtained results are also used to constrain models, where a new gauge boson X   interacts with quarks and leptons. New upper limits on the branching ratio as small as Br(η→γX)?10−14Br(ηγX)?1014 and Br(η→γX)?10−12Br(ηγX)?1012 are obtained, which are several orders of magnitude more restrictive than the previous bounds from the Crystal Barrel experiment.  相似文献   

17.
The idea of a hidden sector of mirror partners of elementary particles has attracted considerable interest as a possible candidate for dark matter. Recently it was pointed out by Berezhiani and Bento that the present experimental data cannot exclude the possibility of a rapid oscillation of the neutron n to a mirror neutron n′ with oscillation time much smaller than the neutron lifetime. A dedicated search for vacuum transitions n→nnn has to be performed at weak magnetic field, where both states are degenerate. We report the result of our experiment, which compares rates of ultracold neutrons after storage at a weak magnetic field well below 20 nT and at a magnetic field strong enough to suppress the seeked transitions. We obtain a new limit for the oscillation time of n–n′ transitions, τosc(90% C.L.)>414 sτosc(90% C.L.)>414 s. The corresponding limit for the mixing energy of the normal and mirror neutron states is δm(90% C.L.)<1.5×10−18 eVδm(90% C.L.)<1.5×10−18 eV.  相似文献   

18.
Three-mode opto-acoustic interactions can excite acoustic modes of the mirrors of an optical cavity. This was achieved when the frequency difference between the fundamental and higher order optical mode matches the frequency of appropriate acoustic mode of the mirror. The excitation also critically depends on the spatial overlap between acoustic and optical modes. In this Letter, we use a controlled CO2 laser to thermally change the radius of curvature of one mirror of an 80 m Fabry–Pérot cavity for three-mode interaction. Several acoustic modes of the cavity end mirror were observed with quality factors of ∼105–106105106 at the thermal noise level.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号