首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jahanshahloo et al. [G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, N. Shoja, G. Tohidi, S. Razavyan, Ranking using l1-norm in data envelopment analysis, Applied Mathematics and Computation, 153 (2004) 215-224] present a method for ranking extremely efficient decision making units (DMUs) in data envelopment analysis (DEA) by exploiting the leave-one-out idea and l1-norm. It is shown that the proposed method is able to remove the existing difficulties in some methods. This paper suggests an effective procedure to transfer the proposed model from the nonlinear programming form into a linear programming form. We show that the model with this transformation is equivalent to the nonlinear model, while it is much easier to solve than the treatment in [1].  相似文献   

2.
This research proposes a new ranking system for extreme efficient DMUs (Decision Making Units) based upon the omission of these efficient DMUs from reference set of the inefficient DMUs. We state and prove some facts related to our model. A numerical example where the proposed method is compared with traditional ranking approaches is shown.  相似文献   

3.
Network data envelopment analysis (DEA) concerns using the DEA technique to measure the relative efficiency of a system, taking into account its internal structure. The results are more meaningful and informative than those obtained from the conventional black-box approach, where the operations of the component processes are ignored. This paper reviews studies on network DEA by examining the models used and the structures of the network system of the problem being studied. This review highlights some directions for future studies from the methodological point of view, and is inspirational for exploring new areas of application from the empirical point of view.  相似文献   

4.
Conventional data envelopment analysis (DEA) models assume real-valued inputs and outputs. In many occasions, some inputs and/or outputs can only take integer values. In some cases, rounding the DEA solution to the nearest whole number can lead to misleading efficiency assessments and performance targets. This paper develops the axiomatic foundation for DEA in the case of integer-valued data, introducing new axioms of “natural disposability” and “natural divisibility”. We derive a DEA production possibility set that satisfies the minimum extrapolation principle under our refined set of axioms. We also present a mixed integer linear programming formula for computing efficiency scores. An empirical application to Iranian university departments illustrates the approach.  相似文献   

5.
Alirezaee and Afsharian [1] have proposed a new index, namely, Balance Index, to rank DMUs. In this paper, we will use their examples to illustrate that the proposed index is not stable. As a result, the corresponding rankings are also unstable. Then we analyze where an error occurs in the new method for complete ranking of decision making units and amend it by introducing the Maximal Balance Index. The numeral example reports the reasonability of our methods.  相似文献   

6.
Evaluating the performance of activities or organization by common data envelopment analysis models requires crisp input/output data. However, the precise inputs and outputs of production processes cannot be always measured. Thus, the data envelopment analysis measurement containing fuzzy data, called “fuzzy data envelopment analysis”, has played an important role in the evaluation of efficiencies of real applications. This paper focuses on the fuzzy CCR model and proposes a new method for determining the lower bounds of fuzzy inputs and outputs. This improves the weak efficiency frontiers of the corresponding production possibility set. Also a numerical example illustrates the capability of the proposed method.  相似文献   

7.
8.
This paper proposes a dynamic data envelopment analysis (DEA) model to measure the system and period efficiencies at the same time for multi-period systems, where quasi-fixed inputs or intermediate products are the source of inter-temporal dependence between consecutive periods. A mathematical relationship is derived in which the complement of the system efficiency is a linear combination of those of the period efficiencies. The proposed model is also more discriminative than the existing ones in identifying the systems with better performance. Taiwanese forests, where the forest stock plays the role of quasi-fixed input, are used to illustrate this approach. The results show that the method for calculating the system efficiency in the literature produces over-estimated scores when the dynamic nature is ignored. This makes it necessary to conduct a dynamic analysis whenever data is available.  相似文献   

9.
Data envelopment analysis is a mathematical programming technique for identifying efficient frontiers for peer decision making units with multiple inputs and multiple outputs. These performance factors (inputs and outputs) are classified into two groups: desirable and undesirable. Obviously, undesirable factors in production process should be reduced to improve the performance. In the current paper, we present a data envelopment analysis (DEA) model in which can be used to improve the relative performance via increasing undesirable inputs and decreasing undesirable outputs.  相似文献   

10.
Cross efficiency evaluation has long been proposed as an alternative method for ranking the decision making units (DMUs) in data envelopment analysis (DEA). This study proposes goal programming models that could be used in the second stage of the cross evaluation. Proposed goal programming models have different efficiency concepts as classical DEA, minmax and minsum efficiency criteria. Numerical examples are provided to illustrate the applications of the proposed goal programming cross efficiency models.  相似文献   

11.
One of the most important steps in the application of modeling using data envelopment analysis (DEA) is the choice of input and output variables. In this paper, we develop a formal procedure for a “stepwise” approach to variable selection that involves sequentially maximizing (or minimizing) the average change in the efficiencies as variables are added or dropped from the analysis. After developing the stepwise procedure, applications from classic DEA studies are presented and the new managerial insights gained from the stepwise procedure are discussed. We discuss how this easy to understand and intuitively sound method yields useful managerial results and assists in identifying DEA models that include variables with the largest impact on the DEA results.  相似文献   

12.
Efficiency measurement is an important issue for any firm or organization. Efficiency measurement allows organizations to compare their performance with their competitors’ and then develop corresponding plans to improve performance. Various efficiency measurement tools, such as conventional statistical methods and non-parametric methods, have been successfully developed in the literature. Among these tools, the data envelopment analysis (DEA) approach is one of the most widely discussed. However, problems of discrimination between efficient and inefficient decision-making units also exist in the DEA context (Adler and Yazhemsky, 2010). In this paper, a two-stage approach of integrating independent component analysis (ICA) and data envelopment analysis (DEA) is proposed to overcome this issue. We suggest using ICA first to extract the input variables for generating independent components, then selecting the ICs representing the independent sources of input variables, and finally, inputting the selected ICs as new variables in the DEA model. A simulated dataset and a hospital dataset provided by the Office of Statistics in Taiwan’s Department of Health are used to demonstrate the validity of the proposed two-stage approach. The results show that the proposed method can not only separate performance differences between the DMUs but also improve the discriminatory capability of the DEA’s efficiency measurement.  相似文献   

13.
Data envelopment analysis (DEA) is a technique for evaluating relative efficiencies of peer decision making units (DMUs) which have multiple performance measures. These performance measures have to be classified as either inputs or outputs in DEA. DEA assumes that higher output levels and/or lower input levels indicate better performance. This study is motivated by the fact that there are performance measures (or factors) that cannot be classified as an input or output, because they have target levels with which all DMUs strive to achieve in order to attain the best practice, and any deviations from the target levels are not desirable and may indicate inefficiency. We show how such performance measures with target levels can be incorporated in DEA. We formulate a new production possibility set by extending the standard DEA production possibility set under variable returns-to-scale assumption based on a set of axiomatic properties postulated to suit the case of targeted factors. We develop three efficiency measures by extending the standard radial, slacks-based, and Nerlove–Luenberger measures. We illustrate the proposed model and efficiency measures by applying them to the efficiency evaluation of 36 US universities.  相似文献   

14.
Data envelopment analysis (DEA) has enjoyed a wide range of acceptance by researchers and practitioners alike as an instrument of performance analysis and management since its introduction in 1978. Many formulations and thousands of applications of DEA have been reported in a considerable variety of academic and professional journals all around the world. Almost all of the formulations and applications have basically centered at the concept of “relative self-evaluation”, whether they are single or multi-stage applications. This paper suggests a framework for enhancing the theory of DEA through employing the concept of “relative cross-evaluation” in a multi-stage application context. Managerial situations are described where such enhanced-DEA (E-DEA) formulations had actually been used and could also be potentially most meaningful and useful.  相似文献   

15.
Model misspecification has significant impacts on data envelopment analysis (DEA) efficiency estimates. This paper discusses the four most widely-used approaches to guide variable specification in DEA. We analyze efficiency contribution measure (ECM), principal component analysis (PCA-DEA), a regression-based test, and bootstrapping for variable selection via Monte Carlo simulations to determine each approach’s advantages and disadvantages. For a three input, one output production process, we find that: PCA-DEA performs well with highly correlated inputs (greater than 0.8) and even for small data sets (less than 300 observations); both the regression and ECM approaches perform well under low correlation (less than 0.2) and relatively larger data sets (at least 300 observations); and bootstrapping performs relatively poorly. Bootstrapping requires hours of computational time whereas the three other methods require minutes. Based on the results, we offer guidelines for effectively choosing among the four selection methods.  相似文献   

16.
Data envelopment analysis (DEA) is a powerful technique for performance evaluation of decision making units (DMUs). Ranking efficient DMUs based on a rational analysis is an issue that yet needs further research. The impact of each efficient DMU in evaluation of inefficient DMUs can be considered as additional information to discriminating among efficient DMUs. The concept of reference frontier share is introduced in which the share of each efficient DMU in construction of the reference frontier for evaluating inefficient DMUs is considered. For this purpose a model for measuring the reference frontier share of each efficient DMU associated with each inefficient one is proposed and then a total measure is provided based on which the ranking is made. The new approach has the capability for ranking extreme and non-extreme efficient DMUs. Further, it has no problem in dealing with negative data. These facts are verified by theorems, discussions and numerical examples.  相似文献   

17.
Preference voting and project ranking using DEA and cross-evaluation   总被引:7,自引:0,他引:7  
Cook and Kress (1990), using Data Envelopment Analysis (DEA) as their starting point, proposed a procedure to rank order the candidates in a preferential election. Notionally, each candidate is permitted to choose the most favourable weights to be applied to his/her standings (first place, second place, etc. votes) in the usual DEA manner with the additional ‘assurance region’ restriction that the weight for a j place vote should be more than that for a j +1 amount. We consider that this freedom to choose weights is essentially illusory when maximum discrimination between the candidates is sought, in which case the weights used to evaluate and rank the candidates are as if imposed externally at the outset. To avoid this, we present an alternative procedure which retains Cook and Kress' central idea but where, as well as using each candidate's rating of him/herself, we now make use of each candidate's ratings of all the candidates. We regard the so-called cross-evaluation matrix as the summary of a self- and peer-rating process in which the candidates seek to interpret the voters preferences as favourably for themselves, relative to the other candidates, as possible. The problem then becomes one of establishing an overall rating for each candidate from these individual ratings. For this, for each candidate, we use a weighted average of all the candidates ratings of that candidate, where the weights themselves are in proportion to each candidate's overall rating. The overall ratings are therefore proportional to the components of the principal (left-hand) eigenvector of the cross-evaluation matrix. These ideas are then applied to the selection of R & D projects to comprise an R & D program, thus indicating thier wider applicability.  相似文献   

18.
Data envelopment analysis (DEA) is a useful tool of efficiency measurement for firms and organizations. Kao and Hwang (2008) take into account the series relationship of the two sub-processes in a two-stage production process, and the overall efficiency of the whole process is the product of the efficiencies of the two sub-processes. To find the largest efficiency of one sub-process while maintaining the maximum overall efficiency of the whole process, Kao and Hwang (2008) propose a solution procedure to accomplish this purpose. Nevertheless, one needs to know the overall efficiency of the whole process before calculating the sub-process efficiency. In this note, we propose a method that is able to find the sub-process and overall efficiencies simultaneously.  相似文献   

19.
Benefit-cost analysis is required by law and regulation throughout the federal government. Robert Dorfman (1996) declares ‘Three prominent shortcomings of benefit-cost analysis as currently practiced are (1) it does not identify the population segments that the proposed measure benefits or harms (2) it attempts to reduce all comparisons to a single dimension, generally dollars and cents and (3) it conceals the degree of inaccuracy or uncertainty in its estimates.’ The paper develops an approach for conducting benefit-cost analysis derived from data envelopment analysis (DEA) that overcomes each of Dorfman's objections. The models and methodology proposed give decision makers a tool for evaluating alternative policies and projects where there are multiple constituencies who may have conflicting perspectives. This method incorporates multiple incommensurate attributes while allowing for measures of uncertainty. An application is used to illustrate the method. This work was funded by grant N00014-99-1-0719 from the Office of Naval Research  相似文献   

20.
Since in evaluating by traditional data envelopment analysis (DEA) models many decision making units (DMUs) are classified as efficient, a large number of methods for fully ranking both efficient and inefficient DMUs have been proposed. In this paper a ranking method is suggested which basically differs from previous methods but its models are similar to traditional DEA models such as BCC, additive model, etc. In this ranking method, DMUs are compared against an full-inefficient frontier, which will be defined in this paper. Based on this point of view many models can be designed, and we mention a radial and a slacks-based one out of them. This method can be used to rank all DMUs to get analytic information about the system, and also to rank only efficient DMUs to discriminate between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号