首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple systematic method to derive superspace constraints is presented. Constraints are given for extended supergravity with one- and two-form gauge potentials in four space-time dimensions. The natural constraints lead to equations of motion forN>4 (supergravity), resp.N>2 (gauge potentials). We discuss modifications for higherN. We also discuss modifications of the field strength of the two-form potential to include Chern-Simons three-forms.  相似文献   

2.
We consider simple modifications of the conventional Wilson action for lattice gauge theory. An SU(2) action is defined on “plaquettes” of 2×1 links. It is found to possess phase transitions in three- and four-dimensional realisations of the model. A similar model with gauge group Z(2) is also studied, and found to have two phases in three and four dimensions. We discuss the phase structure of Z(N) gauge models in four dimensions with several coupling constants and present phase diagrams for Z(4), Z(5) and Z(6).  相似文献   

3.
The quantum action (dynamical) principle is exploited to investigate the nature and origin of the Faddeev–Popov (FP) factor in gauge theories without recourse to path integrals. Gauge invariant as well as gauge non-invariant interactions are considered to show that the FP factor needs to be modified in more general cases and expressions for these modifications are derived. In particular we show that a gauge invariant theory does not necessarily imply the familiar FP factor for proper quantization. PACS numbers: 11.15.-q; 12.10.-g; 12.15.-y; 12.38.-t  相似文献   

4.
The different forms of the Hamiltonian formulations of linearized General Relativity/spin-2 theories are discussed in order to show their similarities and differences. It is demonstrated that in the linear model, non-covariant modifications to the initial covariant Lagrangian (similar to those modifications used in full gravity) are in fact unnecessary. The Hamiltonians and the constraints are different in these two formulations but the structure of the constraint algebra and the gauge invariance derived from it are the same. It is shown that these equivalent Hamiltonian formulations are related to each other by a canonical transformation, which is explicitly given. The relevance of these results to the full theory of General Relativity is briefly discussed.  相似文献   

5.
The Method of Invariant Grid (MIG) is a model reduction technique based on the concept of slow invariant manifold (SIM). The MIG approximates the SIM by a set of nodes in the concentration space (invariant grid). In the present work, the MIG is applied to a realistic combustion system: an adiabatic constant volume reactor with H2-air at stoichiometric proportions. By considering the thermodynamic Lyapunov function of the detailed kinetic system, the notion of the quasi-equilibrium manifold (QEM) is adopted as an initial approximation to the SIM. One- and two-dimensional discrete approximations of the QEM (quasi-equilibrium grids) are constructed and refined via MIG to obtain the corresponding invariant grids. The invariant grids are tabulated and used to integrate the reduced system. Excellent agreement between the reduced and detailed kinetics is demonstrated.  相似文献   

6.
谷超豪  胡和生 《物理学报》1977,26(2):155-168
本文讨论球对称的SU2规范场,证明了满足最一般的球对称定义的SU2规范场只能有三种基本类型:(1)同步球对称规范场;(2)狭义球对称规范场;(3)化约为U1子群的球对称规范场。文中详细讨论了球对称的带同位旋向量场(Higgs场)的SU2规范场,完全决定了它们的类型。如果把这种场看成为由电磁场和带电矢介子构成,那末就有如下的结论:如果磁单极所含的磁荷是最小单位的m倍,当|m|>1时,球对称的带Higgs场的SU2规范场只能是纯电磁场,而不能有带电矢介子场出现。但当m=0,±1时,球对称的带电矢介子场是可以出现的。从而可见,具有非单位磁荷的磁单极隐含了某种破坏球对称的因素。  相似文献   

7.
Fortran subroutines to calculate helicity amplitudes with massive spin-2 particles (massive gravitons), which couple to the standard model particles via the energy momentum tensor, are added to the HELAS (HELicity Amplitude Subroutines) library. They are coded in such a way that arbitrary scattering amplitudes with one graviton production and its decays can be generated automatically by MadGraph and MadEvent, after slight modifications. All the codes have been tested carefully by making use of the invariance of the helicity amplitudes under the gauge and general coordinate transformations.  相似文献   

8.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

9.
We describe a supersymmetric model of strong and electroweak interactions based on the gauge groupSU(3)×SU(2)×U(1)×?(1). We concentrate on the pattern of the spontaneous symmetry breaking by the tree level scalar potential. It is possible to break the?(1) factor at superlarge energies relative to the simultaneous breaking scale ofSU(2)×U(1) and supersymmetry. The model has?(1) anomalies. Attempts to make an anomaly-free model based on the groupE 6 are described. We also comment on possible modifications of the?(1) anomaly problem due to gravitational effects.  相似文献   

10.
SU(3) gauge field theory is studied in the Coulomb gauge, and the topologically distinct, but gauge equivalent, vacuum configurations are analysed. Considering the gauge transformations of the form U ε U(2) ?SU(3)/U(2), we have obtained a new class of vacuum fields characterized by the topological quantum number η = ±1.  相似文献   

11.
Fortran subroutines to calculate helicity amplitudes with massive spin-3/2 particles, such as massive gravitinos, which couple to the standard model and supersymmetric particles via the supercurrent, are added to the HELAS (HELicity Amplitude Subroutines) library. They are coded in such a way that arbitrary amplitudes with external gravitinos can be generated automatically by MadGraph, after slight modifications. All the codes have been tested carefully by making use of the gauge invariance of the helicity amplitudes.  相似文献   

12.
We derive strong coupling expansions for the mass gap in euclidean lattice gauge theories in any space-time dimension. For gauge groups SU(2), SU(3), Z2 and Z3 the series are calculated up to order g?16. They are used to get rough estimates for the lowest glueball mass in continuum SU(2) and SU(3) gauge theories, assuming a sudden crossover from strong to weak coupling behaviour in the lattice theory.  相似文献   

13.
We discuss the superspace geometries which are necessary to describe on-shell O(4) and SU(4) supergravity. The relation of central charge field strengths to physical spin-zero fields is exhibited and a “new” O(4) theory is shown to exist. The version of SU(4) supergravity which uses an antisymmetric tensor gauge field is found to require modifications of ordinary superspace. Finally the Poincaré supergeometry which admits the conformal N = 4 supermultiplet is constructed. It is shown that consistency of the Bianchi identities implies the existence of dimension zero auxiliary fields which are components of a non-linear multiplet.  相似文献   

14.
《Physics letters. A》1988,131(3):197-202
On the basis of the local SU (2) symmetry of the Heisenberg model, we show that the model, in a continuum limit, reduces to a problem of massless fermions coupled to an SU(2) gauge field in three space-time dimensions. The effective gauge field action changes by ± π ⦶ n ⦶ under a large gauge transformation with winding number n. To restore the gauge invariance, a parity- nonconserving, topological term is needed in the effective action. The physical implications are conjectured.  相似文献   

15.
K P Sinha 《Pramana》1984,23(2):205-214
A review of some recent papers on gauge theories of weak and strong gravity is presented. For weak gravity, SL(2, C) gauge theory along with tetrad formulation is described which yields massless spin-2 gauge fields (quanta gravitons). Next a unified SL(2n,C) model is discussed along with Higgs fields. Its internal symmetry is SU(n). The free field solutions after symmetry breaking yield massless spin-1 (photons) and spin-2 (gravitons) gauge fields and also massive spin-1 and spin-2 bosons. The massive spin-2 gauge fields are responsible for short range superstrong gravity. Higgs-fermion interaction can lead to baryon and lepton number non-conservation. The relationship of strong gravity with other forces is also briefly considered.  相似文献   

16.
All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L×SU(2)R×U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators.  相似文献   

17.
The linked cluster series expansion proposed by Nickel is extended to the ground state and axial string tension of lattice gauge theory. Proofs of these expansions and applications to Z2 and U(1) gauge theory in 2 + 1 dimensions are presented. We also propose a new finite cluster scaling method based on the linked-cluster expansion and test it against known results for Z2 gauge theory. The utility of the method in studying more complicated lattice gauge theories is emphasized.  相似文献   

18.
《Physics letters. [Part B]》1987,186(2):180-184
It is shown that local gauge transformations preserve the integrability of one-dimensional quantum Heisenberg chains. Abelian U(1) gauge transformations associated to z-rotations appear in the XXZ model which is worked out in detail. The exact energy spectrum derived by the Bethe ansatz turns out to be gauge-invariant whereas the eigenvectors are explicitly gauge-dependent. Isotropic XXX chains exhibit SU(2) ⊗ Z2 gauge invariance properties and anisotropic XYZ chains possess discrete Z2 ⊗ Z2 gauge invariance.  相似文献   

19.
We review double field theory (DFT) with emphasis on the doubled spacetime and its generalized coordinate transformations, which unify diffeomorphisms and b‐field gauge transformations. We illustrate how the composition of generalized coordinate transformations fails to associate. Moreover, in dimensional reduction, the O(d,d) T‐duality transformations of fields can be obtained as generalized diffeomorphisms. Restricted to a half‐dimensional subspace, DFT includes ‘generalized geometry’, but is more general in that local patches of the doubled space may be glued together with generalized coordinate transformations. Indeed, we show that for certain T‐fold backgrounds with non‐geometric fluxes, there are generalized coordinate transformations that induce, as gauge symmetries of DFT, the requisite O(d,d;ℤ) monodromy transformations. Finally we review recent results on the α extension of DFT which, reduced to the half‐dimensional subspace, yields intriguing modifications of the basic structures of generalized geometry.  相似文献   

20.
We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of symmetry. We employ the spacetime of four-dimensional Minkowski, endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength field tensors are calculated and the field equations are written. A solution of these equations is obtained for the case that the gauge potentials have a particular form potentials induces a metric of Schwarzschild type on with spherical symmetry. The solution for the gravitational the gravitational gauge group space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号