首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamical behaviors of two interacting dark energy models are considered. In addition to the scaling attractors found in the non-interacting quintessence model with exponential potential, new accelerated scaling attractors are also found in the interacting dark energy models. The coincidence problem is reduced to the choice of parameters in the interacting dark energy models.  相似文献   

2.
3.
In the holographic Ricci dark energy (RDE) model, the parameter α plays an important role in determining the evolutionary behavior of the dark energy. When α<1/2, the RDE will exhibit a quintom feature, i.e., the equation of state of dark energy will evolve across the cosmological constant boundary w=−1. Observations show that the parameter α is indeed smaller than 1/2, so the late-time evolution of RDE will be really like a phantom energy. Therefore, it seems that the big rip is inevitable in this model. On the other hand, the big rip is actually inconsistent with the theoretical framework of the holographic model of dark energy. To avoid the big rip, we appeal to the extra dimension physics. In this Letter, we investigate the cosmological evolution of the RDE in the braneworld cosmology. It is of interest to find that for the far future evolution of RDE in a Randall–Sundrum braneworld, there is an attractor solution where the steady state (de Sitter) finale occurs, in stead of the big rip.  相似文献   

4.
Recently a lot of attention has been given to building dark energy models in which the equation-of-state parameter w   can cross the phantom divide w=−1w=1. However, to our knowledge, these models with crossing the phantom divide only provide the possibility that w can cross −1. They do not answer another question: why crossing phantom divide occurs recently? Since in many existing models whose equation-of-state parameter can cross the phantom divide, w undulates around −1 randomly, why are we living in an epoch  w<−1w<1? This can be regarded as the second cosmological coincidence problem. In this Letter, we propose a possible approach to alleviate this problem within a hybrid dark energy model.  相似文献   

5.
We investigate a cosmological model of a phantom energy with a variable cosmological constant (∧) depending on the energy density (ρ) as ∧∝ρ^α,α=const and a variable gravitational constant G. The model requires α 〈 0 and a negative gravitational constant. The cosmological constant evolves with time as ∧ ∝ t^-2. For ω 〉 - 1 and α 〈 -1 the cosmological constant ∧ 〈 0, G 〉 0 and ρ decrease with cosmic expansion. For ordinary energy (or dark energy), i.e.ω 〉 -1, we have -1 〈 α〈 0 and β 〉 0 so that G〉0 increases with time and p decreases with time. Cosmic acceleration with dust particles is granted, provided -2/3 〈α〈 0 and ∧〉0.  相似文献   

6.
Since about ten years ago, varying α theories attracted many attentions, mainly due to the first observational evidence from the quasar absorption spectra that the fine structure “constant” might change with cosmological time. In this Letter, we investigate the cosmic evolution of α   driven by the Dirac–Born–Infeld (DBI) scalar field. To be general, we consider various couplings between the DBI scalar field and the electromagnetic field. We also confront the resulting Δα/αΔα/α with the observational constraints, and find that various cosmological evolution histories of Δα/αΔα/α are allowed. Comparing with the case of varying α driven by quintessence, the corresponding constraints on the parameters of coupling have been relaxed, thanks to the relativistic correction of the DBI scalar field.  相似文献   

7.
We propose a unified scenario to generate the masses of Dirac neutrinos and cold dark matter at the TeV scale, understand the origin of dark energy and explain the matter–antimatter asymmetry of the universe. This model can lead to significant impact on the Higgs searches at LHC.  相似文献   

8.
We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.  相似文献   

9.
We investigate the holographic dark energy scenario with a varying gravitational constant, in flat and non-flat background geometry. We extract the exact differential equations determining the evolution of the dark energy density-parameter, which include G-variation correction terms. Performing a low-redshift expansion of the dark energy equation of state, we provide the involved parameters as functions of the current density parameters, of the holographic dark energy constant and of the G-variation.  相似文献   

10.
Introducing a new infrared cut-off for the holographic dark-energy, we study the correspondence between the quintessence, tachyon, K-essence and dilaton energy density with this holographic dark energy density in the flat FRW universe. This correspondence allows to reconstruct the potentials and the dynamics for the scalar fields models, which describe accelerated expansion.  相似文献   

11.
12.
We propose an infrared cut-off for the holographic dark energy, which besides the square of the Hubble scale also contains the time derivative of the Hubble scale. This avoids the problem of causality which appears using the event horizon area as the cut-off, and solves the coincidence problem.  相似文献   

13.
In the framework of a single scalar field quintom model with higher derivative, we construct in this Letter a dark energy model of which the equation of state (EOS) w   crosses over the cosmological constant boundary. Interestingly during the evolution of the universe w<−1w<1 happens just for a period of time with a distinguished feature that w   starts with a value above −1, transits into w<−1w<1, then comes back to w>−1w>1. This avoids the big-rip jeopardy induced by w<−1w<1.  相似文献   

14.
We investigate observational constraints on dark energy models from lookback time (LT) estimates of 32 old passive galaxies distributed over the redshift interval 0.11?z?1.840.11?z?1.84. To build up our LT sample we combine the age measurements for these 32 objects with estimates of the total age of the Universe, as obtained from current CMB data. We show that LT data may provide bounds on the cosmological parameters with accuracy competitive with type Ia Supernova methods. In order to break possible degeneracies between models parameters, we also discuss the bounds when our lookback time versus redshift sample is combined with the recent measurement of the baryonic acoustic oscillation peak and the derived age of the Universe from current CMB measurements.  相似文献   

15.
We study asymptotic dynamics of photons propagating in the polarized vacuum of a locally de Sitter Universe. The origin of the vacuum polarization is fluctuations of a massless, minimally coupled, scalar, which we model by the one-loop vacuum polarization tensor of scalar electrodynamics. We show that late time dynamics of the electric field on superhorizon scales approaches that of an Airy oscillator. The magnetic field amplitude, on the other hand, asymptotically approaches a nonvanishing constant (plus an exponentially small oscillatory component), which is suppressed with respect to the initial (vacuum) amplitude. This implies that the asymptotic photon dynamics is more intricate than that of a massive photon obeying the local Proca equation.  相似文献   

16.
We investigate the cosmological evolution of a two-field model of dark energy, where one is a dilaton field with canonical kinetic energy and the other is a phantom field with a negative kinetic energy term. Phase-plane analysis shows that the "phantom"-dominated scaling solution is the stable late-time attractor of this type of model. We find that during the evolution of the universe, the equation of state w changes from w 〉 -1 to w 〈 -1, which is consistent with recent observations.  相似文献   

17.
Cosmological measurements suggest that our universe contains a dark energy component. In order to study the dark energy evolution, we constrain a parameterized dark energy equation of state ω(z) = ω0 + ω1 1+z/z using the recent observational datasets: 157 Gold type Ia supernovae and the newly released 182 Gold type Ia supernovae by the maximum likelihood method. It is found that the best fit ω(z) crosses -1 in the past and the present best fit value of ω(0) 〈 -1 obtained from 157 Gold-type Ia supernovae. The crossing of-1 is not realized and ω0 = -1 is not ruled out in 1σ confidence level for the 182 Gold-type Ia supernovae. It is also found that the range of parameter ω0 is wide even in 1σ confidence level and the best fit ω(z) is sensitive to the prior of Ωm.  相似文献   

18.
In this Letter we investigate the evolution of a class of cosmologies fueled by quintom dark energy and dark matter. Quintom dark energy is a hybrid of quintessence and phantom which involves the participation of two real scalar fields playing the roles of those two types of dark energy. In that framework we examine, from a dynamical systems perspective, the possibility that those fields are coupled among them by considering an exponential potential with an interesting functional dependence similar but not identical to others studied before. The model we consider represents a counterexample to the typical behavior of quintom models with exponential potentials because it admits either tracking attractors (w=0w=0), or phantom attractors (w<−1w<1).  相似文献   

19.
In this note, we propose a new model of agegraphic dark energy based on the Károlyházy relation, where the time scale is chosen to be the conformal time η   of the Friedmann–Robertson–Walker (FRW) universe. We find that in the radiation-dominated epoch, the equation-of-state parameter of the new agegraphic dark energy wq=−1/3wq=1/3 whereas Ωq=n2a2Ωq=n2a2; in the matter-dominated epoch, wq=−2/3wq=2/3 whereas Ωq=n2a2/4Ωq=n2a2/4; eventually, the new agegraphic dark energy dominates; in the late time wq→−1wq1 when a→∞a, and the new agegraphic dark energy mimics a cosmological constant. In every stage, all things are consistent. The confusion in the original agegraphic dark energy model proposed in [R.G. Cai, Phys. Lett. B 657 (2007) 228, arXiv: 0707.4049 [hep-th]] disappears in this new model. Furthermore, Ωq?1Ωq?1 is naturally satisfied in both radiation-dominated and matter-dominated epochs where a?1a?1. In addition, we further extend the new agegraphic dark energy model by including the interaction between the new agegraphic dark energy and background matter. In this case, we find that wqwq can cross the phantom divide.  相似文献   

20.
Purely kinetic k-essence models in which the Lagrangian contains only a kinetic factor and does not depend explicitly on the field itself are considered, and a theoretical constraint is obtained: Fx -= F0a^-3. Under this theoretical constraint, we discuss a kind of purely κ-essence with form F(X) = -(1 + 2X^n)^1/2n, which can be considered as the generalized tachyon field, and find that this kind of κ-essence is not likely a candidate of dark energy to describe the present accelerated expansion of the Universe. This is contrary to a previous suggestion that κ-essence with such a form may be used to describe phantom cosmologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号