首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
In pursuit of a balance between theoretical naturalness and experimental testability, we propose two classes of multiple seesaw mechanisms at the TeV scale to understand the origin of tiny neutrino masses. They are novel extensions of the canonical and double seesaw mechanisms, respectively, by introducing even and odd numbers of gauge-singlet fermions and scalars. It is thanks to a proper implementation of the global U(1)×Z2NU(1)×Z2N symmetry that the overall neutrino mass matrix in either class has a suggestive nearest-neighbor-interaction pattern. We briefly discuss possible consequences of these TeV-scale seesaw scenarios, which can hopefully be explored in the upcoming Large Hadron Collider and precision neutrino experiments, and present a simple but instructive example of model building.  相似文献   

5.
We propose a new model for naturally realizing light Dirac neutrinos and explaining the baryon asymmetry of the universe through neutrinogenesis. To achieve these, we present a minimal construction which extends the Standard Model with a real singlet scalar, a heavy singlet Dirac fermion and a heavy doublet scalar besides three right-handed neutrinos, respecting lepton number conservation and a Z2Z2 symmetry. The neutrinos acquire small Dirac masses due to the suppression of weak scale over a heavy mass scale. As a key feature of our construction, once the heavy Dirac fermion and doublet scalar go out of equilibrium, their decays induce the CP asymmetry from the interference of tree-level processes with the radiative vertex corrections (rather than the self-energy corrections). Although there is no lepton number violation, an equal and opposite amount of CP asymmetry is generated in the left-handed and the right-handed neutrinos. The left-handed lepton asymmetry would then be converted to the baryon asymmetry in the presence of the sphalerons, while the right-handed lepton asymmetry remains unaffected.  相似文献   

6.
We study the neutrino mass hierarchy at the magnetized Iron CALorimeter (ICAL) detector at India-based Neutrino Observatory with atmospheric neutrino events generated by the Monte Carlo event generator Nuance. We judicially choose the observables so that the possible systematic uncertainties can be reduced. The resolution as a function of both energy and zenith angle simultaneously is obtained for neutrinos and anti-neutrinos separately from thousand years un-oscillated atmospheric neutrino events at ICAL to migrate number of events from neutrino energy and zenith angle bins to muon energy and zenith angle bins. The resonance ranges in terms of directly measurable quantities like muon energy and zenith angle are found using this resolution function at different input values of θ13θ13. Then, the marginalized χ2sχ2s are studied for different input values of θ13θ13 with its resonance ranges taking input data in muon energy and zenith angle bins. Finally, we find that the mass hierarchy can be explored up to a lower value of θ13≈5°θ135° with confidence level >95% in this set up.  相似文献   

7.
8.
9.
10.
11.
12.
We study the possibility of generating deviations from tri-bimaximal (TBM) neutrino mixing to explain the non-zero reactor mixing angle within the framework of both type I and type II seesaw mechanisms. The type I seesaw term gives rise to the μτ   symmetric TBM pattern of neutrino mass matrix as predicted by generic flavor symmetry models like A4A4 whereas the type II seesaw term gives rise to the required deviations from TBM pattern to explain the non-zero θ13θ13. Considering extremal values of Majorana CP phases such that the neutrino mass eigenvalues have the structure (m1,−m2,m3)(m1,m2,m3) and (m1,m2,m3)(m1,m2,m3), we numerically fit the type I seesaw term by taking oscillation as well as cosmology data and then compute the predictions for neutrino parameters after the type II seesaw term is introduced. We consider a minimal structure of the type II seesaw term and check whether the predictions for neutrino parameters lie in the 3σ range. We also outline two possible flavor symmetry models to justify the minimal structure of the type II seesaw term considered in the analysis.  相似文献   

13.
Four different neutrino mass sum-rules have been analyzed: these frequently arise in flavor symmetry models based on the groups A4A4, S4S4 or TT, which are often constructed to generate tri-bimaximal mixing. In general, neutrino mass can be probed in three different ways, using beta decay, neutrino-less double beta decay and cosmology. The general relations between the corresponding three neutrino mass observables are well known. The sum-rules lead to relations between the observables that are different from the general case and therefore only certain regions in parameter space are allowed. Plots of the neutrino mass observables are given for the sum-rules, and analytical expressions for the observables are provided. The case of deviations from the exact sum-rules is also discussed, which can introduce new features. The sum-rules could be used to distinguish some of the many models in the literature, which all lead to the same neutrino oscillation results.  相似文献   

14.
In the canonical seesaw mechanism of neutrino mass, lepton number is only multiplicatively conserved, which enables the important phenomenon of leptogenesis to occur, as an attractive explanation of the present baryon asymmetry of the Universe. A parallel possibility, hitherto unrecognized, also holds for baryon number and baryogenesis. This new idea is shown to be naturally realized in the context of a known supersymmetric string-inspired extension of the Standard Model, based on E6E6 particle content, and having an extra UN(1)U(1)N gauge symmetry. Within this framework, two-loop radiative neutrino masses are also possible, together with a new form of very long-lived matter.  相似文献   

15.
16.
We construct a little Higgs model with the most minimal extension of the standard model gauge group by an extra U(1)U(1) gauge symmetry. For specific charge assignments of scalars, an approximate U(3)U(3) global symmetry appears in the cutoff-squared scalar mass terms generated from gauge bosons at one-loop level. Hence, the Higgs boson, identified as a pseudo-Goldstone boson of the broken global symmetry, has its mass radiatively protected up to scales of 5–10 TeV. In this model, a Z2Z2 symmetry, ensuring the two U(1)U(1) gauge groups to be identical, also makes the extra massive neutral gauge boson stable and a viable dark matter candidate with a promising prospect of direct detection.  相似文献   

17.
We describe a three-family Pati–Salam model from intersecting D6-branes in type IIA string theory on the T6/(Z2×Z2)T6/(Z2×Z2) orientifold which is of strong phenomenological interest. In the model, the gauge coupling unification is achieved naturally at the string scale, and the gauge symmetry can be broken down to the Standard Model (SM) close to the string scale. Moreover, we find that it is possible to obtain the correct SM quark masses and mixings, and the tau lepton mass. Additionally, neutrino masses and mixings may be generated via the seesaw mechanism. Furthermore, we calculate the supersymmetry breaking soft terms, and the corresponding low-energy supersymmetric particle spectra which may potentially be tested at the Large Hadron Collider (LHC), and provide the observed dark matter density.  相似文献   

18.
Current experimental data indicate that two unitarity triangles of the CKM quark mixing matrix V   are almost the right triangles with α≈90°α90°. We highlight a very suggestive parametrization of V and show that its CP-violating phase ? is nearly equal to α   (i.e., ?−α≈1.1°?α1.1°). Both ? and α   are stable against the renormalizaton-group evolution from the electroweak scale MZMZ to a superhigh energy scale MXMX or vice versa, and thus it is impossible to obtain α=90°α=90° at MZMZ from ?=90°?=90° at MXMX. We conjecture that there might also exist a maximal CP-violating phase φ≈90°φ90° in the MNS lepton mixing matrix U. The approximate quark–lepton complementarity relations, which hold in the standard parametrizations of V and U, can also hold in our particular parametrizations of V and U   simply due to the smallness of |Vub||Vub| and |Ve3||Ve3|.  相似文献   

19.
We propose a new mechanism for leptogenesis, which is naturally realized in models with a flavor symmetry based on the discrete group A4A4, where the symmetry breaking parameter also controls the Majorana masses for the heavy right-handed (RH) neutrinos. During the early universe, for T?TeVT?TeV, part of the symmetry is restored, due to finite temperature contributions, and the RH neutrinos remain massless and can be produced in thermal equilibrium even at temperatures well below the most conservative gravitino bounds. Below this temperature the phase transition occurs and they become massive, decaying out of equilibrium and producing the necessary lepton asymmetry. Unless the symmetry is broken explicitly by Planck-suppressed terms, the domain walls generated by the symmetry breaking survive till the quark–hadron phase transition, where they disappear due to a small energy splitting between the A4A4 vacua caused by the QCD anomaly.  相似文献   

20.
We study the evidence for and possible origins of parity doubling among the baryons. First we explore the experimental evidence, finding a significant signal for parity doubling in the non-strange baryons, but little evidence among strange baryons. Next we discuss potential explanations for this phenomenon. Possibilities include suppression of the violation of the flavor singlet axial symmetry (U(1)AU(1)A) of QCD, which is broken by the triangle anomaly and by quark masses. A conventional Wigner–Weyl realization of the SU(2)L×SU(2)RSU(2)L×SU(2)R chiral symmetry would also result in parity doubling. However this requires the suppression of families of chirally invariant   operators by some other dynamical mechanism. In this scenario the parity doubled states should decouple from pions. We discuss other explanations including connections to chiral invariant short distance physics motivated by large NcNc arguments as suggested by Shifman and others, and intrinsic deformation of relatively rigid highly excited hadrons, leading to parity doubling on the leading Regge trajectory. Finally we review the spectroscopic consequences of chiral symmetry using a formalism introduced by Weinberg, and use it to describe two baryons of opposite parity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号