首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A profound quantum-gravitational effect of space–time dimension running with respect to the size of space–time region has been discovered a few years ago through the numerical simulations of lattice quantum gravity in the framework of causal dynamical triangulation [hep-th/0505113] as well as in renormalization group approach to quantum gravity [hep-th/0508202]. Unfortunately, along these approaches the interpretation and the physical meaning of the effective change of dimension at shorter scales is not clear. The aim of this Letter is twofold. First, we find that box-counting dimension in face of finite resolution of space–time (generally implied by quantum gravity) shows a simple way how both the qualitative and the quantitative features of this effect can be understood. Second, considering two most interesting cases of random and holographic fluctuations of the background space, we find that it is random fluctuations that gives running dimension resulting in modification of Newton's inverse square law in a perfect agreement with the modification coming from one-loop gravitational radiative corrections.  相似文献   

2.
We study Abelian strings in a fixed de Sitter background. We find that the gauge and Higgs fields extend smoothly across the cosmological horizon and that the string solutions have oscillating scalar fields outside the cosmological horizon for all currently accepted values of the cosmological constant. If the gauge to Higgs boson mass ratio is small enough, the gauge field function has a power-like behaviour, while it is oscillating outside the cosmological horizon if Higgs and gauge boson mass are comparable. Moreover, we observe that Abelian strings exist only up to a maximal value of the cosmological constant and that two branches of solutions exist that meet at this maximal value. We also construct radially excited solutions that only exist for non-vanishing values of the cosmological constant and are thus a novel feature as compared to flat space–time. Considering the effect of the de Sitter string on the space–time, we observe that the deficit angle increases with increasing cosmological constant. Lensed objects would thus be separated by a larger angle as compared to asymptotically flat space–time.  相似文献   

3.
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.  相似文献   

4.
T. Koide  T. Kodama 《Physics letters. A》2019,383(23):2713-2718
The interplay between quantum fluctuation and spacetime curvature is shown to induce an additional quantum-curvature (QC) term in the energy-momentum tensor of fluid using the generalized framework of the stochastic variational method (SVM). The QC term is necessary to satisfy the momentum conservation but the corresponding quantum hydrodynamics is not necessarily cast into the form of the Schrödinger equation, differently from the case of the Euclidean spacetime. This seems to suggest that the existence of the Hilbert space is not a priori requirement in the quantization of curved spacetime systems. As an example, we apply the Friedmann-Robertson-Walker (FRW) metric and show that this term contributes to the cosmological acceleration although it is too small in the present non-relativistic toy model.  相似文献   

5.
6.
Taking the flat rotation curve as input and treating the matter content in the galactic halo region as perfect fluid we obtain a space–time metric at the galactic halo region in the framework of general relativity. We find that the resultant space–time metric is a non-relativistic dark matter induced space–time embedded in a static Friedmann–Lemaître–Robertson–Walker universe i.e. the flat rotation curve not only leads to the existence of dark matter but also suggests about the background geometry of the universe. Within its range of validity the flat rotation curve and the demand that the dark matter to be non-exotic together indicate for a (nearly) flat universe as favored by the modern cosmological observations. We obtain the expressions for energy density and pressure of dark matter there and consequently the equation of state of dark matter. Various other aspects of the solutions are also analyzed.  相似文献   

7.
First we contemplate the operational definition of space–time in four dimensions in light of basic principles of quantum mechanics and general relativity and consider some of its phenomenological consequences. The quantum gravitational fluctuations of the background metric that comes through the operational definition of space–time are controlled by the Planck scale and are therefore strongly suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity scale but rather to the higher-dimensional modification of Newton's inverse square law at relatively large distances. For models with compact extra dimensions the shape modulus of extra space can be used as a most natural and safe stabilization mechanism against these fluctuations.  相似文献   

8.
The law of variation for mean Hubble’s parameter with average scale factor, in an anisotropic Bianchi type V cosmological space–time, is discussed within the frame work of Lyra’s manifold. The variation of Hubble’s parameter, which gives a constant value of deceleration parameter, generates two types of solutions for the average scale factor; one is the power-law and the other one is of exponential form. Using these two forms, new classes of exact solutions of the field equations have been found for a Bianchi type V space–time filled with perfect fluid in Lyra’s geometry by considering a time-dependent displacement field. The physical and kinematical behaviors of the singular and non-singular models of the universe are examined. Exact expressions for look-back time, luminosity distance and event horizon versus redshift are also derived and their significance are discussed in detail. It has been observed that the solutions are compatible with the results of recent observations.  相似文献   

9.
Quantum relativity as a generalized, or rather deformed, version of Einstein relativity may offer a new framework to think about the structure of space–time at the true microscopic/quantum level. The approach typically gives some picture of a noncommutative (quantum) space–time. We propose a formulation with two deformations implemented on the Poincaré symmetry, using the independent Planck mass and Planck length as the invariant constraints. Together, they give the quantum ?  . The scheme leads to SO(2,4)SO(2,4) as the relativity symmetry. We present a linear realization on a classical six-geometry beyond the familiar setting of space–time. Two extra coordinates to be considered as neither space nor time are needed. The last deformation step implementing the Planck length invariant constraines the six-geometry, as an extension of 4D space–time, giving it the structure of a AdS hypersurface. The resulted quantum world hence does not admit coordinate translation symmetries, which terminates further extension to an unstable symmetry. The quantum world is shown to be parallel to the “conformal universe”, but not scale invariant.  相似文献   

10.
We study the deformation of the horizon‐vicinity geometry caused by quantum gravitational effects. Departure from the semi‐classical picture is noted, and the fact that the matter part of the action comes at a higher order in Newton's constant than does the Einstein‐Hilbert term is crucial for the departure. The analysis leads to a Firewall‐type energy measured by an infalling observer for which quantum generation of the cosmological constant is critical. The analysis seems to suggest that the Firewall should be a part of such deformation and that the information be stored both in the horizon‐vicinity and asymptotic boundary region. We also examine the behavior near the cosmological horizon.  相似文献   

11.
In this paper we analyze the functional renormalization group flow of quantum gravity on the Einstein–Cartan theory space. The latter consists of all action functionals depending on the spin connection and the vielbein field (co-frame) which are invariant under both spacetime diffeomorphisms and local frame rotations. In the first part of the paper we develop a general methodology and corresponding calculational tools which can be used to analyze the flow equation for the pertinent effective average action for any truncation of this theory space. In the second part we apply it to a specific three-dimensional truncated theory space which is parametrized by Newton’s constant, the cosmological constant, and the Immirzi parameter. A comprehensive analysis of their scale dependences is performed, and the possibility of defining an asymptotically safe theory on this hitherto unexplored theory space is investigated. In principle Asymptotic Safety of metric gravity (at least at the level of the effective average action) is neither necessary nor sufficient for Asymptotic Safety on the Einstein–Cartan theory space which might accommodate different “universality classes” of microscopic quantum gravity theories. Nevertheless, we do find evidence for the existence of at least one non-Gaussian renormalization group fixed point which seems suitable for the Asymptotic Safety construction in a setting where the spin connection and the vielbein are the fundamental field variables.  相似文献   

12.
The quantum gravitational contribution to the renormalization group behavior of the electric charge in Einstein-Maxwell theory with a cosmological constant is considered. Quantum gravity is shown to lead to a contribution to the running charge not present when the cosmological constant vanishes. This reopens the possibility, suggested by Robinson and Wilczek, of altering the scaling behavior of gauge theories at high energies although our result differs. We show the possibility of an ultraviolet fixed point that is linked directly to the cosmological constant.  相似文献   

13.
According to theoretical physics the cosmological constant (CC) is expected to be much larger in magnitude than other energy densities in the universe, which is in stark contrast to the observed Big Bang evolution. We address this old CC problem not by introducing an extremely fine-tuned counterterm, but in the context of modified gravity in the Palatini formalism. In our model the large CC term is filtered out, and it does not prevent a standard cosmological evolution. We discuss the filter effect in the epochs of radiation and matter domination as well as in the asymptotic de Sitter future. The final expansion rate can be much lower than inferred from the large CC without using a fine-tuned counterterm. Finally, we show that the CC filter works also in the Kottler (Schwarzschild-de Sitter) metric describing a black hole environment with a CC compatible to the future de Sitter cosmos.  相似文献   

14.
A nontraditional approach to strong gravitation is proposed from the position of induced gravitation. Induction of strong gravitation constants and a strong gravitation “cosmological term” due to quantum effects in curved space is considered. The relationship between induced gravitation and the concept of a heirarchical structure of the universe is studied.  相似文献   

15.
It is known that certain quantum cosmological models present quantum behavior for large scale factors. Since quantization can suppress past singularities, it is natural to inquire whether quantum effects can prevent future singularities. To this end, a Friedmann–Robertson–Walker quantum cosmological model dominated by a phantom energy fluid is investigated. The classical model displays accelerated expansion ending in a Big Rip. The quantization is performed in three different ways, which turn out to lead to the same result, namely there is a possibility that quantum gravitational effects could not remove the Big Rip.  相似文献   

16.
17.
《Physics letters. [Part B]》1987,199(3):363-365
N=8 supergravity can contain a large negative cosmological constant. If this supergravity was induced on a four-dimensional space-time submanifold of a ten-dimensional space by a superstring moving in the latter manifold then there exists the possibility of a mutual cancellation of the constant mentioned and a positive one arising on the given submanifold due to quantum effects from the superstring. After this the evolution of the submanifold will depend essentially on its topological properties.  相似文献   

18.
We establish expressions for the renormalized stress-energy (or energy-momentum) tensor and its associated operators relative to photons as a Klein–Gordon field of non-zero rest-mass particles (with gravitational interaction) in curved four-dimensional space–time.  相似文献   

19.
According to recent astrophysical observations the large scale mean pressure of our present Universe is negative suggesting a positive cosmological constant-like term. The issue of whether nonperturbative effects of self-interacting quantum fields in curved space-times may yield a significant contribution is addressed. Focusing on the trace anomaly of quantum chromodynamics, a preliminary estimate of the expected order of magnitude yields a remarkable coincidence with the empirical data, indicating the potential relevance of this effect.  相似文献   

20.
We have investigated the vacuum maximally symmetric solutions of recently proposed density-metric unimodular gravity theory. The results are widely different from inflationary scenario. The exponential dependence on time in deSitter space is substituted by a power law. Open space–times with non-zero cosmological constant are excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号