首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model for predicting the flow and orientation state of semi-dilute, rigid fiber suspensions in a tapered channel is presented. The effect of the two-way flow/fiber coupling is investigated for low Reynolds number flow using the constitutive model of Shaqfeh and Fredrickson. An orientation distribution function is used to describe the local orientation state of the suspension and evolves according to a Fokker–Plank type equation. The planar orientation distribution function is determined along streamlines of the flow and is coupled with the fluid momentum equations through a fourth-order orientation tensor. The coupling term accounts for the two-way interaction and momentum exchange between the fluid and fiber phases. The fibers are free to interact through long range hydrodynamic fiber–fiber interactions which are modeled using a rotary diffusion coefficient, an approach outlined by Folgar and Tucker. Numerical predictions are made for two different orientation states at the inlet to the contraction, namely a fully random and a partially aligned fiber orientation state. Results from these numerical predictions show that the streamlines of the flow are altered and that velocity profiles change from Jeffery–Hamel, to something resembling a plug flow when the fiber phase is considered in the fluid momentum equations. This phenomenon was found when the suspension enters the channel in either a pre-aligned, or in a fully random orientation state. When the suspension enters the channel in an aligned orientation state, fiber orientation is shown to be only marginally changed when the two-way coupling is included. However, significant differences between coupled and uncoupled predictions of fiber orientation were found when the suspension enters the channel in a random orientation state. In this case, the suspension was shown to align much more quickly when the mutual coupling was accounted for and profiles of the orientation anisotropy were considerably different both qualitatively and quantitatively.  相似文献   

2.
Jeffery’s equation with diffusion is widely used to predict the motion of concentrated fiber suspensions in flows with low Reynold’s numbers. Unfortunately, the evaluation of the fiber orientation distribution can require excessive computation, which is often avoided by solving the related second order moment tensor equation. This approach requires a ‘closure’ that approximates the distribution function’s fourth order moment tensor from its second order moment tensor. This paper presents the Fast Exact Closure (FEC) which uses conversion tensors to obtain a pair of related ordinary differential equations; avoiding approximations of the higher order moment tensors altogether. The FEC is exact in that when there are no fiber interactions, it exactly solves Jeffery’s equation. Numerical examples for dense fiber suspensions are provided with both a Folgar–Tucker (1984) [3] diffusion term and the recent anisotropic rotary diffusion term proposed by Phelps and Tucker (2009) [9]. Computations demonstrate that the FEC exhibits improved accuracy with computational speeds equivalent to or better than existing closure approximations.  相似文献   

3.
The development of flow kinematics and fiber orientation distribution from the parabolic velocity profile and isotropic orientation at the channel inlet was computed in multi-disperse suspension flow through a parallel plate channel and their predictions were compared with those of mono- and bi-disperse suspensions. A statistical scheme (orientations of a large number of fibers are evaluated from the solution of the Jeffery equation along the streamlines) was confirmed to be very useful and feasible method to analyze accurately the orientation distribution of fibers in multi-disperse fiber suspension flow as well as mono- and bi-dispersions, instead of direct solutions of the orientation distribution function of fibers or the evolution equation of the orientation tensor which involves a closure equation. It was found that the flow kinematics and the fiber orientation depend completely on both the fiber aspect-ratio and the fiber parameter for multi-disperse suspension when the fiber–fiber and fiber-wall interactions are neglected. Furthermore, the addition of large aspect-ratio fibers as well as an increase in the fiber parameter related to the large aspect-ratio fibers could suppress the complex velocity field and stress distributions which are observed in suspensions containing small aspect-ratio fibers. From a practical point of view, therefore, the mechanical and physical properties of fiber composites should be improved with an increase in the volume fraction of large aspect-ratio fibers.  相似文献   

4.
The well-posedness of the equations governing the flow of fiber suspensions is studied. The fluid is assumed to be Newtonian and incompressible, and the presence of fibers is accounted for through the use of second- and fourth-order orientation tensors, which model the effects of the orientation of fibers in an averaged sense. The fourth-order orientation tensor is expressed in terms of the second-order tensor through various closure relations. It is shown that the linear closure relation leads to anomalous behavior, in that the rest state of the fluid is unstable, in the sense of Liapounov, for certain ranges of the fiber particle number. No such anomalies arise in the case of quadratic and hybrid closure relations. For the quadratic closure relation, it is shown that a unique solution exists locally in time for small data.  相似文献   

5.
An analysis of orientation in a dilute suspension of rodlike macromolecules in a second-order fluid is presented and the effect of the elasticity of the fluid on the orientation of the suspended particles is examined. Distributions of particle orientation under a simple shear flow have been obtained for small β where β is the ratio of the intrinsic relaxation time of the fluid to the rotational relaxation time of the particle, the latter being inversely proportional to the Brownian rotation diffusion coefficient Dr of the particle. The parameter β represents also the ratio of the Weissenberg number of the fluid to the non-dimensional shear rate, g/Dr. An expression of the stress tensor of the suspension is derived and used in conjuntion with the orientation distribution to obtain the rheological properties of the mixture subjected to a simple shear.  相似文献   

6.
The present work presents a predictive direct fiber simulation of fiber suspensions under uniaxial extensional flows by Stokesian dynamics, considering both near- and farfield hydrodynamic intrafiber interactions and lubrication approximation for interfibers. Initially, code validation is performed and simulation predictions compared with experimental data. Afterwards, the orientation tensor under flow is discussed as a function of volume fraction, aspect ratio and flexibility. Based on the results, a general constitutive equation with a proposed parameter is proposed and verified by comparing experimental data of high volume fraction and high aspect ratio systems.  相似文献   

7.
Nano-rod dispersions in steady shear exhibit persistent transient responses both in experiments and simulations. The rotational contribution from shear flow couples with orientational diffusion, excluded-volume interactions, and distortional elasticity to yield complex dynamics and gradient morphology of the rod ensemble. The classification of sheared responses has mostly focused on “nematodynamics” of the collective particle response known as tumbling, wagging and kayaking; in heterogeneous simulations, one monitors the variability in nematodynamics across the domain. In this paper, we focus on flow coupling and non-Newtonian feedback in transient heterogeneous simulations, and in particular on a remarkable effect: the formation of localized, pulsating jet layers in the shear gap. We solve the Navier–Stokes momentum equations coupled through an orientation-dependent stress to three different orientational models (a kinetic Smoluchowski equation and two tensor models, one from kinetic closure and another from irreversible thermodynamics). A similar spurt phenomenon was reported in 1D simulations of a model for planar nematic liquids by Kupferman et al. [R. Kupferman, M. Kawaguchi, M.M. Denn, Emergence of structure in models of liquid crystalline polymers with elasticity, J. Non-Newt. Fluid Mech. 91 (2000) 255–271], which we extend to full orientational configuration space. We show: the pulsating jet layers correlate, in space and time, with the formation of a non-topological “oblate defect phase” in which the principal axis of orientation spreads from a unique direction to a circle; the jet-defect layers form where the local nematodynamics transitions from finite oscillation (wagging) to continuous rotation (tumbling), and when neighboring directors lose phase coherence; and, a negative first normal stress difference develops in the pulsating jet-defect layers. Finally, we extend one model algorithm to two space dimensions and show numerical stability of the jet-defect phenomenon to 2D perturbations.  相似文献   

8.
The common approach for simulating the evolution of fiber orientation during flow in concentrated suspensions is to use an empirically modified form of Jeffery's equation referred to as the Folgar–Tucker (F-T) model. Direct measurements of fiber orientation were performed in the startup of shear flow for a 30 wt% short glass fiber-filled polybutylene terephthalate (PBT-30); a matrix that behaves similar to a Newtonian fluid. Comparison between predictions based on the F-T model and the experimental fiber orientation show that the model over predicts the rate of fiber reorientation. Rheological measurements of the stress growth functions show that the stress overshoot phenomenon approaches a steady state at a similar strain as the fiber microstructure, at roughly 50 units. However, fiber orientation measurements suggest that a steady state is not reached as the fiber orientation continues to slowly evolve, even up to 200 strain units. The addition of a “slip” parameter to the F-T model improved the model predictions of the fiber orientation and rheological stress growth functions.  相似文献   

9.
The development of fibre orientation distribution in a plane contracting channel flow is investigated with combining experiments and modelling. A dilute suspension of flexible wood fibres is used in the experiments. The salient feature of the suspension is the flexibility of the fibres. To model the fibre orientation probability distribution (FOPD) a diffusion–convection equation is used. The effect of random motion, in this case turbulence, is considered with translational and rotational diffusion coefficients. In addition to providing the inlet conditions, experiments are used to determine the rotational diffusion coefficient for the model. The work addresses the problems related to the above mentioned modelling method and combines the experiments and modelling in order to understand the mechanisms affecting the development of fibre orientation.  相似文献   

10.
A simple kinetic model is presented for the shear rheology of a dilute suspension of particles swimming at low Reynolds number. If interparticle hydrodynamic interactions are neglected, the configuration of the suspension is characterized by the particle orientation distribution, which satisfies a Fokker-Planck equation including the effects of the external shear flow, rotary diffusion, and particle tumbling. The orientation distribution then determines the leading-order term in the particle extra stress in the suspension, which can be evaluated based on the classic theory of Hinch and Leal (J Fluid Mech 52(4):683–712, 1972), and involves an additional contribution arising from the permanent force dipole exerted by the particles as they propel themselves through the fluid. Numerical solutions of the steady-state Fokker-Planck equation were obtained using a spectral method, and results are reported for the shear viscosity and normal stress difference coefficients in terms of flow strength, rotary diffusivity, and correlation time for tumbling. It is found that the rheology is characterized by much stronger normal stress differences than for passive suspensions, and that tail-actuated swimmers result in a strong decrease in the effective shear viscosity of the fluid.  相似文献   

11.
We present an investigation of the phenomenon of stress-induced polymer migration for dilute polymer solutions in the Taylor–Couette device, consisting of two infinitely long, concentric cylinders rotating at constant angular velocities. The underlying physical model is represented by the dilute limit of a two-fluid Hamiltonian system involving two components: one (the polymer) is viscoelastic and obeys the Oldroyd-B constitutive equation, and the other (the solvent) is viscous Newtonian. The two components are considered to be in thermal, but not mechanical equilibrium, interacting with each other through an isotropic drag coefficient tensor. This allows for stress-induced diffusion of polymer chains. The governing equations consist of the continuity and the momentum equations for the bulk velocity, the constitutive model for the polymer chain conformation tensor and the diffusion equation for the polymer concentration. The diffusion equation contains an extra source term, which is proportional to gradients in the polymer stress, so that polymer concentration gradients can develop even in the absence of externally imposed fluxes in the presence of stress inhomogeneities. The solution to the steady-state purely azimuthal flow is obtained first using a spectral collocation method and an adaptive mesh formulation to track the steep changes of the concentration in the flow domain. The calculations show the development of strong polymer migration towards the inner cylinder with increasing Deborah number (De) in agreement with experimental observations. The migration is enhanced for increasing values of the gap thickness resulting in concentration changes by several orders of magnitude in the area between the inner and outer cylinder walls. The extent of the migration also depends strongly on the ratio of the solvent to the polymer viscosity. In addition to a strongly inhomogeneous polymer concentration, significant deviations from the homogenous flow are also observed in the velocity profile. Next, results are reported from a linear stability analysis around the steady-state solution against axisymmetric disturbances corresponding to various wavenumbers in the axial direction. The calculations show that the steady-state solution remains stable up to moderate values of the Deborah number, explaining why some of the predicted stress-induced migration effects should be experimentally observable. The role of the Peclet number (Pe) on the stability of the system is elucidated.  相似文献   

12.
In this work we present a new numerical strategy to treat the 3D Fokker–Planck equation in steady recirculating flows. This strategy combines some ideas of the method of particles, with a more original treatment of the periodicity condition, which characterizes the steady solution of the FP equation in steady recirculating flows, as usually encountered in some rheometric devices. Using this numerical technique the fiber orientation distribution can be computed accurately in any steady recirculating flow. The simulation results can be used to identify some rheological parameters of the suspension, using an inverse technique, as well as to analyze the validity of some simplified models widely used, which require a closure relation. Thus, in this paper several closure relations of the fourth-order orientation tensor will be discussed in the context of a numerical example involving a steady recirculating flow.  相似文献   

13.
Initially isotropic aggregates of crystalline grains show a texture-induced anisotropy of both their inelastic and elastic behavior when submitted to large inelastic deformations. The latter, however, is normally neglected, although experiments as well as numerical simulations clearly show a strong alteration of the elastic properties for certain materials. The main purpose of the work is to formulate a phenomenological model for the evolution of the elastic properties of cubic crystal aggregates. The effective elastic properties are determined by orientation averages of the local elasticity tensors. Arithmetic, geometric, and harmonic averages are compared. It can be shown that for cubic crystal aggregates all of these averages depend on the same irreducible fourth-order tensor, which represents the purely anisotropic portion of the effective elasticity tensor. Coupled equations for the flow rule and the evolution of the anisotropic part of the elasticity tensor are formulated. The flow rule is based on an anisotropic norm of the stress deviator defined by means of the elastic anisotropy. In the evolution equation for the anisotropic part of the elasticity tensor the direction of the rate of change depends only on the inelastic rate of deformation. The evolution equation is derived according to the theory of isotropic tensor functions. The transition from an elastically isotropic initial state to a (path-dependent) final anisotropic state is discussed for polycrystalline copper. The predictions of the model are compared with micro–macro simulations based on the Taylor–Lin model and experimental data.  相似文献   

14.
Yang  D.  Udey  N.  Spanos  T.J.T. 《Transport in Porous Media》1999,35(1):37-47
A thermodynamic automaton model of fluid flow in porous media is presented. The model is a nonrelativistic version of a Lorentz invariant lattice gas model constructed by Udey et al. (1998). In the previous model it was shown that the energy momentum tensor and the relativistic Boltzman equation can be rigorously derived from the collision and propagation rules. In the present paper we demonstrate that this nonrelativistic model can be used to accurately simulate well known results involving single phase flow and diffusion in porous media. The simulation results show that (1) one-phase flow simulations in porous media are consistent with Darcy's law; (2) the apparent diffusion coefficient decreases with a decrease in permeability; (3) small scale heterogeneity does not affect diffusion significantly in the cases considered.  相似文献   

15.
A phase-transitional flow takes place during the filling stage by injection molding of short-fiber reinforced thermoplastics. The mechanical properties of the final product are highly dependent on the flow-induced distribution and orientation of particles. Therefore, modelling of the flow which allows to predict the formation of fiber microstructure is of particular importance for analysis and design of load bearing components. The aim of this paper is a discussion of existing models which characterize the behavior of fiber suspensions as well as the derivation of a model which treats the filling process as a phase-transitional flow of a binary medium consisting of fluid particles (liquid constituent) and immersed particles-fibers (solid-liquid constituent). The particle density and the mass density are considered as independent functions in order to account for the phenomenon of sticking of fluid particles to fibers. The liquid constituent is treated as a non-polar viscous fluid, but with a non-symmetric stress tensor. The state of the solid-liquid constituent is described by the antisymmetric stress tensor and the antisymmetric moment stress tensor. The forces of viscous friction between the constituents are taken into account. The equations of motion are formulated for open physical systems in order to consider the phenomenon of sticking. The chemical potential is introduced based on the reduced energy balance equation. The second law of thermodynamics is formulated by means of two inequalities under the assumption that the constituents may have different temperatures. In order to take into account the phase transitions of the liquid-solid type which take place during the flow process a model of compressible fluid and a constitutive equation for the pressure are proposed. Finally, the set of governing equations which should be solved numerically in order to simulate the filling process are summarized. The special cases of these equations are discussed by introduction of restricting assumptions.Received: 6 May 2002, Accepted: 16 December 2002, Published online: 29 July 2003PACS: 83.10.Ff, 83.70.Hg, 83.50.Cz Correspondence to: H. Altenbach  相似文献   

16.
Fiber suspension flow and fiber orientation through a parallel-plate channel were numerically simulated for fiber suspensions including continuously dispersed aspect ratios from 10 to 50. In the simulations, both the fiber–fiber and fiber–wall interactions were not taken into account. A statistical scheme that proceeds by evaluating the orientation evolution of a large number of fibers from the solution of the Jeffery equation along the streamlines was confirmed to be a very useful and feasible method to accurately analyze the orientation distribution of fibers with continuously dispersed aspect ratios. For monodisperse suspensions with small-aspect-ratio fibers, flip-over or oscillation phenomenon of the orientation ellipsoid caused the wavy patterns of the velocity profile and the streamlines as well as the abrupt and complex variation of the shear stress and the normal stress difference near the channel wall as proven in one of our former works. On the other hand, continuous dispersions containing from small- to large-aspect-ratio fibers were able to induce smoother evolutions of the fiber orientation and the flow kinematics. In the processing of fiber composites, the length of suspended fibers is always continuously distributed because of fiber breakage during processing; thus, the smooth evolutions of the flow kinematics and the stress distribution can be attained.This paper was presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

17.
The dynamics of fluid systems which consist of a suspended material in a Newtonian continuous phase is investigated theoretically. Criteria are derived to predict conditions under which the strength of a flow, i.e. a measure of the form and magnitude of the velocity gradient tensor, is sufficient to induce significant deformation and/or orientation of the fluid microstructure, that is, the elements which collectively comprise the suspended phase. The development relies upon the choice of a model to describe the microstructure, and the form of the criteria reflects this choice. Once the choice is made, however, the detailed material properties of a particular fluid system enter only as parameters in the resulting equations, and thus, the results encompass a large class of systems, including particulate suspensions and macromolecular solutions. Two microstructure models are investigated here. When the microstructure is characterized by a vector, the flow strengths of all linear flows are displayed in a single figure from which the strength of a particular flow can be evaluated directly. A comparison is then made for selected flows between these results and those for the case where an irreducible second order tensor is employed to describe the microstructure. A significant difference between the two models derives from the fact that the “volume” of the microstructure must be conserved in the second-order tensor case. The criteria are finally used to predict the degree of macromolecular stretching in a model turbulent flow and the breakup of immiscible liquid drops in simple shear flow. A comparison between the flow strength predictions and experimental data yields good qualitative agreement in the latter case.  相似文献   

18.
We consider two rheological models for concentrated fiber suspensions. In both models the equations for orientation and flow are fully coupled, i.e., the orientation influences the flow via a constitutive relation for the viscosity and the orientation of the fibers is determined by the flow field. The orientation state of the fibers is characterized by the Advani–Tucker orientation tensor. We are investigating suspensions of fibers in which the kinetic energies of the fibers are large compared to the thermal energies, i.e., the influence of Brownian motion may be neglected. The first model is the Folgar–Tucker model with backcoupling to the flow (FT model). The second model is an extension of Folgar–Tucker, which models phenomenologically the topological exclusion interaction in dense suspensions (FTMS model). As test cases for the simulation are considered channel flow, 8:1 contraction flow and flow around a cylinder.  相似文献   

19.
A limiting factor in the design of fiber-reinforced composites is their failure under axial compression along the fiber direction. These critical axial stresses are significantly reduced in the presence of shear stresses. This investigation is motivated by the desire to study the onset of failure in fiber-reinforced composites under arbitrary multi-axial loading and in the absence of the experimentally inevitable imperfections and finite boundaries.By using a finite strain continuum mechanics formulation for the bifurcation (buckling) problem of a rate-independent, perfectly periodic (layered) solid of infinite extent, we are able to study the influence of load orientation, material properties and fiber volume fraction on the onset of instability in fiber-reinforced composites. Two applications of the general theory are presented in detail, one for a finitely strained elastic rubber composite and another for a graphite-epoxy composite, whose constitutive properties have been determined experimentally. For the latter case, extensive comparisons are made between the predictions of our general theory and the available experimental results as well as to the existing approximate structural theories. It is found that the load orientation, material properties and fiber volume fraction have substantial effects on the onset of failure stresses as well as on the type of the corresponding mode (local or global).  相似文献   

20.
The present work can be regarded as a first step toward an integrated modeling of mold filling during injection molding process of polymer composites and the resulting material behavior under service loading conditions. More precisely, the emphasis of the present paper is laid on how to account for local fiber orientation in the ground matrix on the prediction of the mechanical response of the composite at its final solid state. To this end, a set of experiments which captures the mechanical behavior of an injection molded short fiber-reinforced thermoplastic under different strain histories is described. It is shown that the material exhibits complex response mainly due to non-linearity, anisotropy, time/rate-dependence, hysteresis and permanent strain. Furthermore, the relaxed state of the material is characterized by the existence of an equilibrium hysteresis independently of the applied strain rate. A three-dimensional phenomenological model to represent experimentally observed response is developed. The microstructure configuration of the material is simplified and assumed to be entirely represented by a distributed fiber orientation in the ground matrix. In order to account for distributed short fiber orientations in a continuum sense, a concept of (symmetric) generalized structural tensor (tensor of orientation) of second order is adopted. The proposed model is based on assumption that the strain energy function of the composite is given by a linear mixture of the strain energy of each constituent: an isotropic part representing Phase 1 which is essentially related to the ground matrix and an anisotropic part describing Phase 2 which is mainly related to the fibers and the interphase as a whole. Hence, taking into account the fiber content and orientation, the efficiency of the model is assessed and perspectives are drawn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号