首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The problem of convex interval interpolation with cubicC 1-splines has an infinite number of solutions, if it is solvable at all. For selecting one of the solutions a regularized mean curvature is minimized. The arising finite dimensional constrained program is solved numerically by means of a dualization approach.Dedicated to Professor Julius Albrecht on the occasion of his 65th birthday.  相似文献   

2.
A criterion for the positivity of a cubic polynomial on a given interval is derived. By means of this result a necessary and sufficient condition is given under which cubicC 1-spline interpolants are nonnegative. Further, since such interpolants are not uniquely determined, for selecting one of them the geometric curvature is minimized. The arising optimization problem is solved numerically via dualization.  相似文献   

3.
In [4,6], the authors have presented a numerical method for the solution of complex minimax problems, which implicitly solves discretized versions of the equivalent semi-infinite programming problem on increasingly finer grids. While this method only requires the most violated constraint at the current iterate on a finite subset of the infinitely many constraints of the problem, we consider here a related and more direct approach (applicable to general convex semi-infinite programming problems) which makes use of the globally most violated constraint. Numerical examples with up to 500 unknowns, which partially originate from digital filter design problems, are discussed.  相似文献   

4.
It is shown how the combined discretization and cutting plane method for general convex semi-infinite programming problems recently presented in [40] can be effectively implemented for the solution of minimax problems in the complex plane. In contrast to other approaches, the minimax problem does not have to be linearized. The performance of the algorithm is demonstrated by a number of highly accurate numerical examples.  相似文献   

5.
6.
We propose algorithms of adaptive integration for calculation of the tail probability in multi-factor credit portfolio loss models. We first modify the classical Genz-Malik rule, a deterministic multiple integration rule suitable for portfolio credit models with number of factors less than 8. Later on we arrive at the adaptive Monte Carlo integration, which essentially replaces the deterministic integration rule by antithetic random numbers. The latter can not only handle higher-dimensional models but is also able to provide reliable probabilistic error bounds. Both algorithms are asymptotic convergent and consistently outperform the plain Monte Carlo method.  相似文献   

7.
Summary The Gregory rule is a well-known example in numerical quadrature of a trapezoidal rule with endpoint corrections of a given order. In the literature, the methods of constructing the Gregory rule have, in contrast to Newton-Cotes quadrature,not been based on the integration of an interpolant. In this paper, after first characterizing an even-order Gregory interpolant by means of a generalized Lagrange interpolation operator, we proceed to explicitly construct such an interpolant by employing results from nodal spline interpolation, as established in recent work by the author and C.H. Rohwer. Nonoptimal order error estimates for the Gregory rule of even order are then easily obtained.  相似文献   

8.
We study optimal stochastic (or Monte Carlo) quadrature formulas for convex functions. While nonadaptive Monte Carlo methods are not better than deterministic methods, we prove that adaptive Monte Carlo methods are much better.Supported by a Heisenberg scholarship of the DFG.  相似文献   

9.
We propose a parametric tensioned version of the FVS macro-element to control the shape of the composite surface and remove artificial oscillations, bumps and other undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces over a four-directional mesh produced by two-stage scattered data fitting methods.  相似文献   

10.
An efficient algorithm for computing a smoothing polynomial splines under inequality constraints on derivatives is introduced where both order and breakpoints ofs can be prescribed arbitrarily. By using the B-spline representation ofs, the original semi-infinite constraints are replaced by stronger finite ones, leading to a least squares problem with linear inequality constraints. Then these constraints are transformed into simple box constraints by an appropriate substitution of variables so that efficient standard techniques for solving such problems can be applied. Moreover, the smoothing term commonly used is replaced by a cheaply computable approximation. All matrix transformations are realized by numerically stable Givens rotations, and the band structure of the problem is exploited as far as possible.  相似文献   

11.
An algorithm is derived for generating the information needed to pass efficiently between multi-indices of neighboring degrees, of use in the construction and evaluation of interpolating polynomials and in the construction of good bases for polynomial ideals. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Error bounds between a nonlinear interpolation and the limit function of its associated subdivision scheme are estimated. The bounds can be evaluated without recursive subdivision. We show that this interpolation is convexity preserving, as its associated subdivision scheme. Finally, some numerical experiments are presented.  相似文献   

13.
This note is devoted to Lagrange interpolation for continuous piecewise smooth functions. A new family of interpolatory functions with explicit approximation error bounds is obtained. We apply the theory to the classical Lagrange interpolation.  相似文献   

14.
This note is concerned with the characterizations and uniqueness of bases of finite dimensional spaces of univariate continuous functions which are optimally stable for evaluation with respect to bases whose elements have no sign changes.  相似文献   

15.
In this paper, a method that combines shape preservation and least squares approximation by splines with free knots is developed. Besides the coefficients of the spline a subset of the knot sequence, the so-calledfree knots, is included in the optimization process resulting in a nonlinear least squares problem in both the coefficients and the knots. The original problem, a special case of aconstrained semi-linear least squares problem, is reduced to a problem that has only the knots of the spline as variables. The reduced problem is solved by a generalized Gauss-Newton method. Special emphasise is given to the efficient computation of the residual function and its Jacobian. Dedicated to our colleague and teacher Prof. Dr. J. W. Schmidt on the occasion of his 65th birthday Research of the first author was supported by Deutsche Forschungsgemeinschaft under grant Schm 968/2-1,2-2.  相似文献   

16.
Spline quasi-interpolants are practical and effective approximation operators. In this paper, we construct QIs with optimal approximation orders and small infinity norms called near-best discrete quasi-interpolants which are based on Ω-splines, i.e. B-splines with octagonal supports on the uniform four-directional mesh of the plane. These quasi-interpolants are exact on some space of polynomials and they minimize an upper bound of their infinity norms depending on a finite number of free parameters. We show that this problem has always a solution, in general nonunique. Concrete examples of such quasi-interpolants are given in the last section.  相似文献   

17.
In this paper, the construction of orthogonal bases in the space of Laurent polynomials on the unit circle is considered. As an application, a connection with the so-called bi-orthogonal systems of trigonometric polynomials is established and quadrature formulas on the unit circle based on Laurent polynomials are studied.  相似文献   

18.
In this paper, we study the global behavior of a function that is known to be small at a given discrete data set. Such a function might be interpreted as the error function between an unknown function and a given approximant. We will show that a small error on the discrete data set leads under mild assumptions automatically to a small error on a larger region. We will apply these results to spline smoothing and show that a specific, a priori choice of the smoothing parameter is possible and leads to the same approximation order as the classical interpolant. This has also a surprising application in stabilizing the interpolation process by splines and positive definite kernels.  相似文献   

19.
Quasi-interpolation of radial basis functions on finite grids is a very useful strategy in approximation theory and its applications. A notable strongpoint of the strategy is to obtain directly the approximants without the need to solve any linear system of equations. For radial basis functions with Gaussian kernel, there have been more studies on the interpolation and quasi-interpolation on infinite grids. This paper investigates the approximation by quasi-interpolation operators with Gaussian kernel on the compact interval. The approximation errors for two classes of function with compact support sets are estimated. Furthermore, the approximation errors of derivatives of the approximants to the corresponding derivatives of the approximated functions are estimated. Finally, the numerical experiments are presented to confirm the accuracy of the approximations.  相似文献   

20.
In this paper, (d+1)-pencil lattices on simplicial partitions in Rd, which are not simply connected, are studied. It is shown, how the fact that a partition is not simply connected can be used to increase the flexibility of a lattice. A local modification algorithm is developed also to deal with slight partition topology changes that may appear afterwards a lattice has already been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号