首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
23Na nuclear magnetic resonance (NMR) spectroscopy of NaCl-exchanged polyamide (PA) films comparable to those of the active skin layer of many reverse osmosis (RO) membranes provides novel insight into the structural environments and dynamical behavior of Na+ in such films. Unsupported PA films were synthesized via interfacial polymerization of trimesoyl chloride in hexane and m-phenylenediamine in aqueous solution, and SEM, FT-IR, and 13C NMR data demonstrate successful thin film polymerization. Compositional data confirm this conclusion and demonstrate equal Na and Cl incorporation during NaCl exchange from aqueous solution. The 23Na NMR spectra for freshly made polymer samples exchanged in 1 M NaCl solution show significant relative humidity (RH) dependence. At near 0% RH, there are resonances for crystalline NaCl and rigidly held Na+ in the PA. With increasing RH, a resonance for solution-like dynamically averaged Na+ appears and above 51% RH is the only signal observed. The slightly negative chemical shift of this resonance suggests a dominantly hydrous environment with some atomic-scale coordination by atoms of the polymer. The greatly reduced 23Na T1 relaxation rates for this resonance relative to bulk solution and crystalline NaCl confirm close association with the polymer. Variable temperature 23Na NMR spectra for a sample equilibrated at 97% RH obtained from −80 to 20 °C show the presence of rigidly held Na+ in a hydrated environment at low temperatures and replacement of this resonance by the dynamically averaged signal at temperatures above about −20 °C. The results provide support for the solution–diffusion model for RO membranes transport and demonstrate the capabilities of multi-nuclear NMR methods to investigate molecular-scale structure and dynamics of the interactions between dissolved species and RO membranes.  相似文献   

2.
The effects of addition of cationic cetyltrimethylammonium bromide (CTAB), non-ionic (Triton X-100) and anionic sodium dodecyl sulfate (SDS) surfactants in organic phase for preparing the composite nanofiltration membranes were investigated. The interfacial polymerization technique was employed by applying trimesoyl chloride (TMC) and piperazine (PIP) as the reagents for the preparation of poly(piperazineamide) on a UF support. The obtained thin layer membranes were placed in oven for 2 min at 70 °C. Water permeation performance, salt rejection, membrane surface charge, chemical structure and membrane morphology including top surface and cross-section were investigated for characterization of the prepared membranes using IR-ATR, SEM, filtration and zeta potential measurement. The prepared membranes using SDS showed higher flux compared to the other membranes. SEM surface images demonstrate some defects and cracks on the thin layer surface of the membrane prepared with SDS. For membrane containing CTAB, the salt rejection increased in the order of Na2SO4 > NaCl > MgCl2 with variation around 50–90%.  相似文献   

3.
Interfacial polymerization (IP) is a powerful technique for fabrication of thin film composite (TFC) membranes. The polymers used most often as support are polysulfone (PS) or polyethersulfone (PES). These supports have limited stability in organic solvents. In this work, microporous polypropylene (PP) flat film and hollow fiber membranes were used as a support to fabricate TFC membranes for nanofiltration by the IP technique. Porous polypropylene membranes can provide substantial chemical, pH, and solvent resistance and are therefore suitable as supports for fabricating TFC membranes functioning as solvent-stable nanofiltration membranes. The surface and the pore interior of polypropylene flat sheet and hollow fiber membranes were hydrophilized first by pre-wetting with acetone followed by oxidation with chromic acid solution. A standard procedure to successfully coat the hydrophilized flat film and hollow fiber membranes was developed next. The monomeric system chosen for IP was poly(ethyleneimine) and isophthaloyl dichloride. The TFC hollow fiber membranes were characterized by nanofiltration of safranin O (MW 351) and brilliant blue R (MW 826) dyes in methanol. Rejection values of 88% and 43% were achieved for brilliant blue R and safranin O, respectively at a transmembrane pressure of 413 kPa in the TFC hollow fiber membranes. Pressure dependences of the solvent flux and solute rejection of the TFC membranes were studied using the modified flat sheet membranes up to a pressure of 965–1241 kPa. Solvent flux increased linearly with an increase in the transmembrane pressure. Solute rejection also increased with an increase in the transmembrane pressure. All modified membranes were also characterized using scanning electron microscopy. Extended-term solvent stability of the fabricated membranes was studied in toluene; the membranes demonstrated substantial solvent stability in toluene.  相似文献   

4.
Effect of chemical structures of amines on the performance of isopropanol dehydration by pervaporation through the polyamide thin-film composite membranes prepared by various amines reacting with TMC on the surfaces of the modified asymmetric polyacrylonitrile (mPAN) membranes was investigated. ATR-FTIR, SEM, AFM and water contact angle were used to characterize the chemical structures, morphologies and hydrophilicity of the polyamide active layers of the composite membranes. To investigate the correlation between the free volume of polyamide active layer and pervaporation performance, the free volume variation of the polyamide active layers was probed by positron annihilation spectroscopy (PAS) experiments performed using the slow positron beam. It was found that the pervaporation performance for separating 90 wt.% aqueous isopropanol solutions at 25 °C decreased in the order of EDA–TMC/mPAN membrane > MPDA–TMC/mPAN membrane > PIP–TMC/mPAN and HDA–TMC/mPAN membranes. The relationship between the performance of isopropanol dehydration and the physicochemical properties of the polyamide layers, that is, the free volume, surface roughness and hydrophilicity seemed very well.  相似文献   

5.
A novel thin-film composite (TFC) membrane for nanofiltration (NF) was developed by the interfacial polymerization of triethanolamine (TEOA) and trimesoyl chloride (TMC) on the polysulfone (PSf) supporting membrane. The active surface of the membrane was characterized by using FT-IR, XPS and SEM. The performance of TFC membrane was optimized by studying the preparation parameters, such as the reaction time of polymerization, pH of aqueous phase and the concentration of reactive monomers. It is found that the membrane performance is related to the changes of the monomer content in the aqueous phase rather than in the organic phase. Furthermore, the nanofiltration properties of the TFC membrane were tested by examining the separating performance of various salts at 0.6 MPa operating pressure. The rejection to different salt solutions decreased as per the order of Na2SO4 (82.2%), MgSO4 (76.5%), NaCl (42.2%) and MgCl2 (23%). Also, streaming potential tests indicated that isoelectric point of the TFC membrane is between pH 4 and 5. Moreover, the investigation of the flux for NaCl solution at different pH showed that the polyester NF composite membrane is also particularly suitable for treating acidic feeds: the flux increased from 8.4 to 11.5 L/m2 h when pH of the feed decreased from 9 to 3. Additionally, the TFC membrane exhibits good long-term stability.  相似文献   

6.
The nanofiltration of binary aqueous solutions of glucose, sucrose and sodium sulfate was investigated using thin-film composite polyamide membranes with different molecular weight cut-off's. The NF experiments, in total recycle mode, were performed in a plate-and-frame module Lab 20 (AlfaLaval), at 22 °C and with a flowrate of 8.2 L/min, using the membranes NF90, NF200 and NF270 from FilmTec (Dow Chemical), for transmembrane pressures between 1 and 6 MPa and with aqueous solutions with osmotic pressures of between 0.5 and 3.0 MPa. The permeate flux was predicted by the osmotic pressure model, using the membrane hydraulic resistance and the solution viscosity inside the membrane pores, and computing the concentration polarization with recourse to a mass-transfer correlation specific for the plate-and-frame module used. The flux predictions, using the pure water viscosity, agree reasonably with the experimental data only for low transmembrane pressures and with the most diluted solutions. For higher transmembrane pressures and for higher solute concentration the predicted fluxes can be as far as 2.5, 4.1 and 9.6 times higher than the experimental one, for the aqueous solutions of Na2SO4, glucose and sucrose, respectively. These deviations are strongly reduced when the pure water viscosity is replaced by the solution viscosity adjacent to the membrane. In this case, the maximum deviation between predictions and experiments occurs also for higher transmembrane pressures and for higher solute concentration, but the maximum ratio between predicted values and the experiments were reduced now to 1.8, 2.1 and 2.9, for the aqueous solutions of Na2SO4, glucose and sucrose, respectively. Even using the solution viscosity adjacent to the membrane, and for the systems investigated, the osmotic pressure model must used with caution for design purposes because it may over predict the permeate flux by a factor of about 2 when the solute concentration is high.  相似文献   

7.
The effect of gel layer thickness on salt separation of positively charged pore-filled nanofiltration membranes has been examined both theoretically and experimentally. The extended Nernst-Planck (ENP) equation coupled with the Teorell-Meyer-Sievers (TMS) model were used to calculate the pressure-driven sodium chloride rejections for membranes having gel densities in the range typically used in nanofiltration applications. It was found that salt rejection was dependent on membrane (gel-layer) thickness with salt rejections increasing rapidly with thickness up to 50–75 μm. Further increases in thickness beyond this point had a much smaller effect on salt rejection. The theoretical predictions were examined experimentally by preparing a series of membranes with cross-linked poly(3-acrylamidopropyl)-trimethylammonium chloride (PAPTAC) gels with varying densities within the pores of a thin microporous polyethylene (PE) support. The membranes were characterized by their polymer volume fractions (gel concentration), thicknesses and effective charge densities. The effect of membrane thickness was examined by using single and stacks of two membranes. The pure water fluxes and salt rejections of the membranes and membrane stacks were determined in the pressure range 50–550 kPa. The single salt rejections of the membranes which were very dependent on the thickness of the membrane or membrane stack, were fully in accord with the calculated salt rejections of the membranes.  相似文献   

8.
分别以邻苯二胺、间苯二胺、对苯二胺为水相单体,均苯三甲酰氯(TMC)为油相单体,聚醚砜超滤膜为基膜,界面聚合法制备了复合纳滤膜.在纳滤膜对Na<,2>SO<,4>,MgSO<,4>,MgCl<,2>和NaCl四种盐的脱盐率中,间苯二胺膜最高,对苯二胺膜居中,邻苯二胺膜最差;在纳滤膜耐氯性能方面,对苯二胺最佳,邻苯二胺居...  相似文献   

9.
Thin-film composite (TFC) nanofiltration (NF) membrane was prepared through the interfacial polymerization between piperazine (PIP) and trimesoyl chloride (TMC) on the polysulphone support membrane. The chemical structure of membrane surface was studied by attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS). Parametric studies were conducted by varying reaction time, curing temperature, curing time and additives in PIP solution for obtaining the optimum polymerization conditions. Systematic performance studies were conducted with different feed solutions, feed concentrations, feed pHs, operating temperatures and pressures. Continuous and comparative tests were also conducted to determine the performance stability and separation efficiency of the thin-film composite NF membrane prepared. High performance thin-film composite NF membrane for the selective sulfate removal from concentrated sodium chloride aqueous with the water permeability coefficient of 75 L/(m2 h MPa) could be prepared under specific conditions. Experimental results on concentrated mixed solution of NaCl and Na2SO4 demonstrated that the NF membrane developed could be successfully used for the removal of sodium sulfate from the concentrated brine of chloralkali industry with high permeate flux, selectivity and performance stability.  相似文献   

10.
The relation between biofouling and membrane flux in spiral wound nanofiltration and reverse osmosis membranes in drinking water stations with extensive pretreatment such as ultrafiltration has been studied. The flux – water volume flowing through the membrane per unit area and time – is not influencing the development of membrane biofouling. Irrespective whether a flux was applied or not, the feed spacer channel pressure drop and biofilm concentration increased in reverse osmosis and nanofiltration membranes in a monitor, test rigs, a pilot scale and a full-scale installation. Identical behavior with respect to biofouling and feed channel pressure drop development was observed in membrane elements in the same position in a nanofiltration installation operated with and without flux. Calculation of the ratio of diffusive and convective flux showed that the diffusive flux is considerably larger than the convective flux, supporting the observations that the convective flux due to permeate production is playing an insignificant role in biofouling. Since fouling occurred irrespective of the actual flux, the critical flux concept stating that “below a critical flux no fouling occurs” is not a suitable approach to control biofouling of spiral wound reverse osmosis and nanofiltration membranes.  相似文献   

11.
Graphene oxide (GO) has triggered significant attention as a new type of self‐assembly membrane material. However, the low filtration flux and unstable performance of GO membrane limit its practical application. Hence, in this work, layered double hydroxides (LDHs), as a 2D material with double‐layer channel structure and positive electricity, were self‐assembled with GO at weight ratio of 7:3 by electrostatic interaction. Then, the GO/LDH hybrids combined with polydopamine (PDA) to obtain stable and high‐flux GO‐based membranes through vacuum filtration and the structure and morphology of as‐prepared samples were characterized by FT‐IR, XRD, XPS, and SEM. Furthermore, the separation performance and surface electronegativity of membranes were tested via pure water flux, rejection efficiency, recycle experiments, and zeta potential. Results revealed that the stability and flux of composite membrane were enhanced significantly compared with neat GO‐based membrane. Further, the dye rejection rate of methylene blue (MB) is higher than Congo red (CR) and rhodamine B (Rh B) and reached to 99.8%.  相似文献   

12.
The hydrogen permeation and stability of tubular palladium alloy (Pd–23%Ag) composite membranes have been investigated at elevated temperatures and pressures. In our analysis we differentiate between dilution of hydrogen by other gas components, hydrogen depletion along the membrane length, concentration polarization adjacent to the membrane surface, and effects due to surface adsorption, on the hydrogen flux. A maximum H2 flux of 1223 mL cm−2 min−1 or 8.4 mol m−2 s−1 was obtained at 400 °C and 26 bar hydrogen feed pressure, corresponding to a permeance of 6.4 × 10−3 mol m−2 s−1 Pa−0.5. A good linear relationship was found between hydrogen flux and pressure as predicted for rate controlling bulk diffusion. In a mixture of 50% H2 + 50% N2 a maximum H2 flux of 230 mL cm−2 min−1 and separation factor of 1400 were achieved at 26 bar. The large reduction in hydrogen flux is mainly caused by the build-up of a hydrogen-depleted concentration polarization layer adjacent to the membrane due to insufficient mass transport in the gas phase. Substituting N2 with CO2 results in further reduction of flux, but not as large as for CO where adsorption prevail as the dominating flow controlling factor. In WGS conditions (57.5% H2, 18.7% CO2, 3.8% CO, 1.2% CH4 and 18.7% steam), a H2 permeance of 1.1 × 10−3 mol m−2 s−1 Pa−0.5 was found at 400 °C and 26 bar feed pressure. Operating the membrane for 500 h under various conditions (WGS and H2 + N2 mixtures) at 26 bars indicated no membrane failure, but a small decrease in flux. A peculiar flux inhibiting effect of long term exposure to high concentration of N2 was observed. The membrane surface was deformed and expanded after operation, mainly following the topography of the macroporous support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号