首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high demands on high performance membranes for energy, water and life science usages provide the impetus for membrane scientists to search for a comprehensive understanding of membrane formation from molecular level to design membranes with desirable configuration and separation performance. This pioneering work is to elaborate the importance of polymer rheology on hollow fiber formation and reveal the integrated science bridging polymer fundamentals such as polymer cluster size, shear and elongational viscosities, molecular orientation, stress relaxation to membrane microstructure and separation performance for gas separation. Torlon® poly(amide imide) was employed in this study with various solvent/nonsolvent additives. The effects of additives on polymeric cluster size, hydrogen bonding and dope rheology during the phase inversion have been examined. It is found that hydrogen bonding and strain-hardening characteristics play very important roles in dope rheology and membrane separation performance. Torlon® possesses strong hydrogen bonds with NMP/water mixtures, the addition of a small amount of water enlarges polymer cluster size, strengthen molecular network (i.e., strain hardening) and facilitate macrovoid-free morphology. However, strong hydrogen bonding may retard chain unfolding during spinning, induce faster relaxation for highly oriented dense-selective skin, and thus reduce gas-pair selectivity. By adjusting dope chemistry and spinning conditions with balanced solubility parameters and dope rheology, we have developed defect-free Torlon® hollow fiber membranes with an O2/N2 selectivity of 8.55 and an ultra-thin layer of 488 Å simply using water as the additive. Fibers spun from dopes containing other additives have the optimal O2/N2 selectivity varying from 7.69 to 9.97 at 25 ± 2 °C, and the dense layer thickness varying from 500 Å to 2000 Å. Their corresponding mixed-gas O2/N2 selectivity for compressed air varies from 7.12 to 9.00.  相似文献   

2.
Torlon®, a polyamide–imide polymer, was used for high-pressure CO2 separations, as it can form inter- and intra-chain hydrogen bonding that may provide stability against plasticization. Asymmetric hollow fiber membranes with a defect-free selective skin were successfully formed from Torlon® using a dry–wet spinning process. Dope and spinning parameters were optimized to obtain these fibers, which had CO2/CH4 selectivity of 44 and O2/N2 selectivity of 7.7. These selectivities are about 85% of the intrinsic (dense film) value of 52 for CO2/CH4 and 90% of the intrinsic value of 8.3 for O2/N2, respectively. Based on analyses presented, the reduced selectivities are attributed to substructure resistance rather than actual skin layer defects. Macrovoids, which compromise the strength of the fiber, were reduced by increasing the polymer concentration. The resulting fiber could withstand up to 2000 psi of N2, and a CO2 permeation study indicates that this fiber can perform selective separations under supercritical conditions of 1100 psi of CO2 at 35 °C.  相似文献   

3.
A concept demonstration has been made to simultaneously enhance both O2 and CO2 gas permeance and O2/N2 and CO2/CH4 selectivity via intelligently decoupling the effects of elongational and shear rates on dense-selective layer and optimizing spinning conditions in dual-layer hollow fiber fabrication. The dual-layer polyethersulfone hollow fiber membranes developed in this work exhibit an O2/N2 selectivity of 6.96 and an O2 permeance of 4.79 GPU which corresponds to an ultrathin dense-selective layer of 918 Å at room temperature. These hollow fibers also show an impressive CO2/CH4 selectivity of 49.8 in the mixed gas system considering the intrinsic value of only 32 for polyethersulfone dense films. To our best knowledge, this is the first time to achieve such a high CO2/CH4 selectivity without incorporating any material modification. The above gas separation performance demonstrates that the optimization of dual-layer spinning conditions with balanced elongational and shear rates is an effective approach to produce superior hollow fiber membranes for oxygen enrichment and natural gas separation.  相似文献   

4.
We present a new processing scheme for the deposition of microporous, sol–gel derived silica membranes on inexpensive, commercially available anodic alumina (Anodisk™) supports. In a first step, a surfactant-templated mesoporous silica sublayer (pore size 2–6 nm) is deposited on the Anodisk support by dip-coating, in order to provide a smooth transition from the pore size of the support (20 or 100 nm) to that of the membrane (3–4 Å). Subsequently, the microporous gas separation membrane layer is deposited by spin-coating, resulting in a defect-free dual-layer micro-/mesoporous silica membrane exhibiting high permeance and high selectivity for size selective gas separations. For example, in the case of CO2:N2 separation, the CO2 permeance reached 3.0 MPU (1 MPU = 10−7 mol m−2 s−1 Pa−1) coupled with a CO2:N2 separation factor in excess of 80 at 25 °C. This processing scheme can be utilized for laboratory-scale development of other types of microporous or dense inorganic membranes, taking advantage of the availability, low cost and low permeation resistance of anodic alumina (or other metal oxide) meso- and macroporous supports.  相似文献   

5.
Integrally skinned asymmetric poly(vinylidene fluoride) hollow fibre membranes were prepared and characterized. The effects of phase inversion methods (dry-wet or wet) and spinning conditions, such as the type of solvent (NMP, DMAc), the concentration of polymer in dope solution, temperature of the external coagulation bath and the composition of the inner coagulant on the morphology and on the formation of a dense skin layer were investigated. The structure of the membranes was analyzed by scanning electron microscopy and the gas permeation properties with six different gases (He, H2, N2, O2, CH4 and CO2) were measured at 25 °C to confirm the integrity of the selective skin layer. Under the proper conditions highly selective and permeable PVDF hollow fibre membranes were thus obtained by dry-wet spinning of a 30 wt.% PVDF solution in DMAc, using hot water (50 °C) as the external coagulant and a bore fluid of pure water as the internal coagulant. The best membrane had a selective outer skin with an effective thickness of approximately 0.2 μm. The ideal selectivity of the hollow fibres approached or even exceeded the intrinsic ideal selectivity of a dense PVDF film, for instance the selectivity for He over N2 was 86.2 for the hollow fibre, whereas it was 83.5 for a dense PVDF reference film. DSC and FT-IR/ATR analysis indicated a higher fraction of the β-crystal phase in the selective skin and a high overall crystallinity than in the melt-processed film. The latter explains the relatively high selectivity and low permeability of the membranes. Intrinsic polymer properties make the membranes also suitable for vapour transport than for gas separation.  相似文献   

6.
Matrimid/polysulfone (PSf) dual-layer hollow fiber membranes were fabricated by using co-extrusion and dry-jet wet-spinning phase-inversion techniques. The effects of the spinning dope composition, spinneret dimension, spinneret temperature and the air gap distance on the hollow fiber membranes separation performance were studied. Aging phenomenon was also studied. After coated by 3 wt% silicon solution, the hollow fiber membranes have an O2/N2 selectivity of 7.55 at 25 °C, 506.625 kPa which exceeds the intrinsic value of Matrimid. The membranes have an O2 permeance of 9.36 GPU with an apparent dense-layer thickness of 1421 Å calculated from the O2 permeability. SEM images show the high porosity underneath the dense skin. It indicates that non-solvent addition is not necessary in the inner spinning dope to induce the macroviod formation. The binodals of the Matrimid/solvent/H2O and PSf/solvent/H2O indicate that the composition of the spinning dope plays an important role in the structure and the gas separation performance of the dual-layer hollow fiber membranes. The delayed demixing of the inner spinning dope may fabricate low resistance support layers in the dual-layer hollow fiber membranes.  相似文献   

7.
The concept of fabricating hollow fibers with double-layer mixed-matrix materials using the same polymeric matrix has been demonstrated for gas separation. Polyethersulfone (PES)–beta zeolite/PES–Al2O3 dual-layer mixed-matrix hollow fiber membranes with enhanced separation performance have been fabricated. This study presents an innovative approach of utilizing low cost PES and Al2O3 to replace expensive polyimides as the supporting medium for dual-layer mixed-matrix hollow fibers and eliminating interlayer de-lamination problems. The incorporations of 20 wt% beta zeolite in the outer selective layer and 60 wt% Al2O3 in the inner layer coupled with spinning at high elongational draw ratios yield membranes with an O2/N2 selectivity of 6.89. The presence of Al2O3 particles enables the membrane to retain its porous substructure morphology in the course of annealing above the glass transition temperature of PES. Moreover, spinning at high elongational draw ratios results in the re-distribution of Al2O3 particles towards both edges of the inner layer. Not only do the permeance and selectivity of the fibers increase, but also greater mechanical properties and lower degree of shrinkages are obtained. Therefore, the combination of PES–beta zeolite and PES–Al2O3 nanoparticles with a reasonable draw ratio may be another promising approach to produce hollow fibers with double-layer mixed-matrix materials.  相似文献   

8.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.  相似文献   

9.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

10.
A series of Ru(acac)24-diene) complexes containing cis- and trans-diene coordination have been investigated by cyclic voltammetry to correlate structural bonding and conformation patterns of diene ligands with redox behaviors. The solid-state structure of Ru(acac)2(2,3-dimethyl-1,3-butadiene) has been determined by single crystal X-ray diffraction methods. Ru(acac)2(2,3-dimethyl-1,3-butadiene) crystallizes in the monoclinic space group C2/c with a = 12.368(2) Å, b = 17.0600(2) Å, c = 16.0110(2) Å, β = 98.4405(10)° and V = 3341.38(10) Å3 for Z = 8. A structural comparison between several Ru-trans4-diene complexes and Ru-η4-1,3-cyclohexadiene revealed no difference in the Ru-C(diene) bond distances. However, through cyclic voltammetry experiments these species demonstrated different redox behavior, as function of the coordinated diene ligand.  相似文献   

11.
We have developed almost defect-free Matrimid/polyethersulfone (PES) dual-layer hollow fibers with an ultra-thin outer layer of about 10 × 10−6 m (10 μm), studied the effects of spinneret and coagulant temperatures and dope flow rates on membrane morphology and separation performance, and highlighted the process similarities and differences between single-layer and dual-layer hollow fiber fabrications. The compositions of the outer and inner layer dopes were 26.2/58.8/15.0 (in wt.%) Matrimid/NMP/methanol and 36/51.2/12.8 (in wt.%) PES/NMP/ethanol, respectively. It is found that 25 °C for both spinneret and coagulant is a better condition, and the fibers thus spun exhibit an O2/N2 selectivity of 6.26 which is within the 87% of the intrinsic value and a calculated apparent dense-layer thickness of about 2886 × 10−10 m (2886 Å). These dual-layer membranes also have impressive CO2/CH4 selectivity of around 40 in mixed gas tests. The scanning electron microscopy (SEM) studies show that low coagulant temperatures produce dual-layer hollow fibers with an overall thicker thickness and tighter interfacial structure which may result in a higher substructure resistance and decrease the permeance and selectivity simultaneously. The elemental analysis of the interface skins confirms that a faster inter-layer diffusion occurs when the fibers are spun at higher spinneret temperatures. Experimental results also reveal that the separation performance of dual-layer hollow fiber membranes is extremely sensitive to the outer layer dope flow rate, and the inner layer dope flow rate also has some influence. SEM pictures indicate that the macrovoid formation in dual-layer asymmetric hollow fiber membranes is quite similar to that in single-layer ones. It appears that macrovoids observed in this study likely start from local stress imbalance and weak points.  相似文献   

12.
A new efficient blue phosphor, Eu2+ activated SrZnP2O7, has been synthesized at 1000 °C under reduced atmosphere and the crystal structure and photoluminescence properties have been investigated. The crystal structure of SrZnP2O7 was obtained via Rietveld refinement of powder X-ray diffraction (XRD) pattern. It was found that SrZnP2O7 crystallizes in space group of P21/n (no. 14), Z=4, and the unit cell dimensions are: a=5.30906(2) Å, b=8.21392(3) Å, c=12.73595(5) Å, β=90.1573(3)°, and V=555.390(3) Å3. Under ultraviolet excitation (200-400 nm), efficient Eu2+ emission peaked at 420 nm was observed, of which the luminescent efficiency at the optimal concentration of Eu2+ (4 mol%) was estimated to be 96% as that of BaMgAl10O17:Eu2+. Hence, the SrZnP2O7:Eu2+ exhibit great potential as a phosphor in different applications, such as ultraviolet light emitting diode and photo-therapy lamps.  相似文献   

13.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

14.
A headspace solid-phase microextraction and gas chromatography-nitrogen-phosphorous detection (HS-SPME-GC-NPD) method using polypyrrole (PPy) fibers has been introduced to determine two derivatives of pyrrolidone; N-vinyl-2-pyrrolidone (NVP) and N-methyl-2-pyrrolidone (NMP). Two types of PPy fibers, prepared using organic and aqueous media, were compared in terms of extraction efficiency and thermal stability. It was found that PPy film prepared using organic medium (i.e. acetonitrile) had higher extraction efficiency and more thermal stability compared to the film prepared in aqueous medium. To enhance the sensitivity of HS-SPME, the effects of pH, ionic strength, extraction time, extraction temperature and the headspace volume on the extraction efficiency were optimized. Using the results of this research, high sensitivity and selectivity had been achieved due to the combination of the high extraction efficiency of PPy film prepared in organic medium and the high sensitivity and selectivity of nitrogen-phosphorous detection. Linear range of the analytes was found to be between 1.0 and 1000 μg L−1 with regression coefficients (R2) of 0.998 and 0.997 for NVP and NMP, consequently. Limits of detection (LODs) were 0.074 and 0.081 μg L−1 for NVP and NMP, respectively. Relative standard deviation (R.S.D.) for five replications of analyses was found to be less than 6.0%. In real samples the mean recoveries were 94.81% and 94.15% for NVP and NMP, respectively. The results demonstrated the suitability of the HS-SPME technique for analyzing NVP and NMP in two different pharmaceutical matrices. In addition, the method was used for simultaneous detection of NVP, 2-pyrrolidone (2-Pyr), γ-butyrolactone (GBL) and ethanolamine (EA) compounds.  相似文献   

15.
The high-temperature polymorphs of two photocatalytic materials, BiNbO4 and BiTaO4 were synthesized by the ceramic method. The crystal structures of these materials were determined by single-crystal X-ray diffraction. BiNbO4 and BiTaO4 crystallize into the triclinic system P1¯ (No. 2), with a=5.5376(4) Å, b=7.6184(3) Å, c=7.9324(36) Å, α=102.565(3)°, β=90.143(2)°, γ=92.788 (4)°, V=326.21 (5) Å3, Z=4 and a=5.931 (1) Å, b=7.672 (2) Å, c=7.786 (2) Å, α=102.94 (3)°, β=90.04 (3)° γ=93.53 (3)°, V=344.59 (1) Å3 and Z=4, respectively. The structures along the c-axis, consist of layers of [Bi2O2] units separated by puckered sheets of (Nb/Ta)O6 octahedra. Photocatalytic studies on the degradation of dyes indicate selectivity of BiNbO4 towards aromatics containing quinonic and azo functional groups.  相似文献   

16.
A single-crystal X-ray diffraction analysis has been performed on KDyP4O12 synthesized by a flux method. The new compound crystallizes at room temperature in the monoclinic space group C2/c with unit cell parameters: a=7.812(2) Å, b=12.318(3) Å, c=10.441(2) Å, β=111.09(2)°, V=937.42(4) Å3 and Dcal=3.66 g cm−3 for Z=4. A full-matrix least square refinement gave R1=0.022, wR2=0.04 for 2421 independent reflections (I>2σ(I)) refined with 84 parameters.The structure is built up from P4O124− cyclotetraphosphate anions linked by DyO8 polyhedra to form a three-dimensional framework, which delimits intersecting oxygen tunnels in which the K+ ions are located. The atomic arrangement can be described as a succession of layers extending along the [010] direction. The P4O124− ring anion is centrosymmetrical is connected by irregularly shaped KO10 polyhedra to form a layer structure parallel to (001). Dysprosium and potassium are surrounded by eight and ten oxygen atoms respectively.Samples have been examined by impedance and infrared spectroscopy techniques. The reported IR absorption investigation, recorded at room temperature in the frequency range 200-4000 cm−1, shows some bands characteristic of cyclotetraphosphates.The electrical conductivity of KDyP4O12 has subsequently been measured as a function of temperature, it represents a significant ionic conductivity and activation energy (σ=2.15×10−4 Ω−1cm−1 at 453 K and Ea=0.387 eV) corresponding to the mobility of the K+ cations located within tunnels.  相似文献   

17.
The new compound Cs4P2Se10 was serendipitously produced in high purity during a high-temperature synthesis done in a nuclear magnetic resonance (NMR) spectrometer. 31P magic angle spinning (MAS) NMR of the products of the synthesis revealed that the dominant phosphorus-containing product had a chemical shift of −52.8 ppm that could not be assigned to any known compound. Deep reddish brown well-formed plate-like crystals were isolated from the NMR reaction ampoule and the structure was solved with X-ray diffraction. Cs4P2Se10 has the triclinic space group P-1 with a=7.3587(11) Å, b=7.4546(11) Å, c=10.1420(15) Å, α=85.938(2)°, β=88.055(2)°, and γ=85.609(2)° and contains the [P2Se10]4− anion. To our knowledge, this is the first compound containing this anion that is composed of two tetrahedral (PSe4) units connected by a diselenide linkage. It was also possible to form a glass by quenching the melt in ice water, and Cs4P2Se10 was recovered upon annealing. The static 31P NMR spectrum at 350 °C contained a single peak with a −35 ppm chemical shift and a ∼7 ppm peak width. This study highlights the potential of solid-state and high-temperature NMR for aiding discovery of new compounds and for probing the species that exist at high temperature.  相似文献   

18.
The compounds, Cd(BF4)(TaF6) and Cd(BF4)(BiF6), have been synthesized and characterized by single-crystal X-ray diffraction and Raman spectroscopy. Both isostructural compounds crystallize in the monoclinic P21/c space group with a = 8.2700(6) Å, b = 9.3691(6) Å, c = 8.8896(7) Å, β = 94.196(3)°, V = 686.94(9) Å3 for Cd(BF4)(TaF6) and a = 8.3412(8) Å, b = 9.4062(8) Å, c = 8.9570(7) Å, β = 93.320(5)°, V = 701.58(11) Å3 for Cd(BF4)(BiF6). Eight fluorine atoms (4 BF4 + 4 AF6) form a surrounding around the cadmium atom in the shape of distorted square antiprism. These compounds are not isostructural with mixed-anion analogues of Ca, Sr, Ba and Pb studied earlier.  相似文献   

19.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

20.
Mixed-matrix membranes were prepared from Matrimid® and mesoporous ZSM-5 nanoparticles containing crystalline ZSM-5. The ideal selectivity for H2/N2 separation increased from 79.6 for pure Matrimid® to 143 at 10% loading, while the selectivity of O2/N2 increased from 6.6 for pure Matrimid® to 10.4 at 20% loading. The ideal H2/CH4 separation factor increased from 83.3 to 169 at 20% loading. The results suggest that the mesopores of the ZSM-5 material provide good contact between the nanoparticles and the polymer, since the polymer chains can penetrate into the mesopores. The micropores of ZSM-5 crystals provide size and shape selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号