首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ISOLTRAP is a Penning trap mass spectrometer for high-precision mass measurements on short-lived nuclides installed at the on-line isotope separator ISOLDE at CERN. The masses of close to 300 radionuclides have been determined up to now. The applicability of Penning trap mass spectrometry to mass measurements of exotic nuclei has been extended considerably at ISOLTRAP by improving and developing this double Penning trap mass spectrometer over the past two decades. The accurate determination of nuclear binding energies far from stability includes nuclei that are produced at rates less than 100 ions/s and with half-lives well below 100ms. The mass-resolving power reaches 107 corresponding to 10keV for medium heavy nuclei and the uncertainty of the resulting mass values has been pushed down to below 10-8. The article describes technical developments achieved since 1996 and the present performance of ISOLTRAP.  相似文献   

3.
High-precision mass measurements on lithium-like and hydrogen-like 40Ca-ions are reported. The obtained mass of the hydrogen-like and lithium-like ion is 39.952181819(29) u and 39.953272223(24) u, respectively. The corresponding mass of the 40Ca atom is 39.962590858(22) u. This new value has a precision ten times higher than the literature value.  相似文献   

4.
5.
6.
7.
We have measured the isotope shift between 41K and 39K in the 4s1/2 → 5p1/2 transition at 405 nm using saturation spectroscopy. Our measured isotope shift is 456.1 ± 0.8 MHz, implying a residual isotope shift (sum of specific mass shift and field shift) of −52.7 ± 0.8 MHz. We deduce a specific mass shift of −40 ± 5 MHz, which would imply that the 5p1/2 state has a considerably larger specific mass shift than the 4p1/2 state. We have in addition measured the 5p1/2 hyperfine splitting for 41K.  相似文献   

8.
The atomic and nuclear masses of 4He and 3He have been measured using doubly charged ions in a Penning trap connected to an electron beam ion source. Recent technical improvements allow mass determinations with uncertainties of a few parts in 1010. The obtained atomic masses are 4.002 603 256 8(13) u and 3.016 029 323 5(28) u respectively. These values deviate by as much as 5 standard deviations from the accepted values. Received 23 October 2000 and Received in final form 6 February 2001  相似文献   

9.
We construct a phenomenologica/KN interaction which reproduces the two resonances: the energy of the first resonance is 1420MeV and the other is 1392MeV. The A(1405) is found by a superposition of the two reso- nances with appropriate weights. Within the framework of the Brueckner-Hartree-Fock theory, we have studied K- - 3He(T = 0) and K- - 4He(T = 1/2). The binding energy BK- is 93MeV(72MeV) and the width F is 13 MeV(25 MeV) for K- - 3He(T =0) ( K- - 4He(T = 1/2)).  相似文献   

10.
Precise atomic mass determinations play a key role in various fields of physics, including nuclear physics, testing of fundamental symmetries and constants and atomic physics. Recently, the TITAN Penning trap measured the masses of several neutron halos. These exotic systems have an extended, diluted, matter distribution that can be modelled by considering a nuclear core surrounded by a halo formed by one or more of loosely bound neutrons. Combined with laser spectroscopy measurements of isotopic shifts precise masses can be used to obtain reliable charge radii and two-neutron-seperation energies for these halo nuclei. It is shown that these results can be used as stringent tests of nuclear models and potentials providing an important metric for our understanding of the interactions in all nuclei.  相似文献   

11.
For the determination of the bound-electron g factor in hydrogen-like heavy ions the mass of the ion is needed at a relative uncertainty of at least 1 ppb. With the SMILETRAP Penning trap mass spectrometer at the Manne Siegbahn Laboratory in Stockholm several mass measurements of ions with even-even nuclei at this level of precision have been performed so far, exploiting the fact that the mass precision increases linearly with the ion charge. Measurements of masses of the hydrogen-like ions of the two Mg-isotopes 24Mg and 26Mg are reported. The masses of the hydrogen-like ions are 23.979011054(14) u and 25.976562354(34) u, corresponding to the atomic masses 23.985041690(14) u and 25.982592986(34) u, respectively. The possibility to use these two isotopes for the first observation of an isotope effect in the bound-electron g factor in hydrogen-like heavy ions is discussed.  相似文献   

12.
The accurate atomic data of nitrogen and nitrogen-like ions have an importance role in fusion plasma studies and astrophysics studies. The precise calculation of fine-structures is required to obtain such atomic data. Along the whole nitrogen isoelectronic sequence, the contributions of the electron correlations, the Breit interactions and the quantum electrodynamics corrections oi1 the ground-state fine-structures are elucidated. When Z is low, the electron correlations are important, and the Breit interactions, which cannot be neglected cause interesting anomalous fine-structure splittings. When Z is high, the electron correlations are less important, and the Breit interactions are important in addition to spin-orbit interactions for precise calculations.  相似文献   

13.
The masses of 80, 81, 82, 83Y, 83, 84, 85, 86, 88Zr and 85, 86, 87, 88Nb have been measured with a typical precision of 7keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides.  相似文献   

14.
In this note a simple idea is suggested to calculate the effect of damping on the ion motion in a Penning trap. The analysis is restricted to the experimentally important special case that the axial motion (z-direction) is not coupled to that in the xy-plane, so that both motions can be treated separately. The method views the cyclotron frequency ωc as a complex variable that can be continued analytically from real values (undamped case) into the complex plane. The power of the approach becomes obvious in connection with advanced problems such as the calculation of line profiles for quadrupole excitation.  相似文献   

15.
4He (i.e., α particle) and 6He emissions from possible molecular states in beryllium and carbon isotopes have been investigated using a mean-field-type cluster potential. Calculations can reasonably describe the α-decay widths of studied states in beryllium and carbon isotopes, and also 20Ne, compared with experiments. For the nucleus 10Be, we discussed α-decay widths with different shapes or different decay modes, in order to understand the very different decay widths of two excited states. The widths of 6He decays from 12Be and α decays from 13,14C are predicted, which could be useful for future experiments.  相似文献   

16.
The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the line were measured to improve the understanding of the rp-process path and the SbSnTe cycle. Furthermore, the masses of the neutron-rich gallium ( ) to palladium ( ) nuclei have been measured. The physics impacts on the nuclear structure and the r-process paths are reviewed. A better understanding of the nuclear deformation is presented by studying the pairing energy around .  相似文献   

17.
The Penning-trap mass spectrometer SHIPTRAP allows precision mass measurements of rare isotopes produced in fusion-evaporation reactions. In the first period of operation the masses of more than 50 neutron-deficient radionuclides have been measured. In this paper the perspectives for direct mass measurements of rare isotopes around nobelium are discussed and the achievable precision is addressed. The temporal stability of the magnetic field, an important issue for the long measurement times resulting from the low production rates, was investigated and the time-dependent uncertainty due to magnetic field fluctuations was determined. Based on the present performance direct mass measurements of nobelium isotopes are already feasible. With several technical improvements heavier elements between Z=102–105 will be in reach.  相似文献   

18.
Using the multi-configuration Dirac-Fock self-consistent field method and the relativistic configuration interaction method with quantum-electrodynamics corrections performed by the GRASP code, we calculate the fine-structure energy levels of the ground-state configuration (1s^22s^22p^3) of the nitrogen isoelectronic sequence, according to the L-S coupling scheme with atomic number Z up to 22. Based on the calculated results, we elucidate the mechanism of the orderings of fine-structure energy levels of 2^ D3/2,5/2 and 2^P1/2,3/2 respectively, i.e. for 2^D3/2,5/2 orderings, the competition between the spin-orbit interactions and the Breit interactions; for 2^P1/2,3/2 orderings, the electron correlations, especially the electron correlations owing to the 2p^5 configuration interactions.  相似文献   

19.
20.
The present status and recent results from direct mass measurements of exotic nuclei are presented. ISOL, in-flight, and combined facilities provide a wide variety of nuclides far-off stability covering a wide range of half-lives down to the sub-millisecond region. Modern direct mass measurements are carried out using frequency and time-of-flight techniques. The obtained accurate mass data point to nuclear-structure phenomena and serve as a basis for astrophysical and weak-interaction studies. Received: 21 March 2002 / Accepted: 16 May 2002 / Published online: 31 October 2002 RID="a" ID="a"e-mail: c.scheidenberger@gsi.de  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号