首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Two generations of lipophilic pyrenyl functionalized poly(benzyl ether) dendrimers (P1 and P2) have been synthesized. The thermal properties of the two functionalized dendrimers have been investigated, and the pyrenyl group of the dendritic molecules encapsulated in the arene–ruthenium metalla‐cage, [Ru6(p‐cymene)6(tpt)2(donq)3]6+ ([ 1 ]6+) (tpt=2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine; donq=5,8‐dioxydo‐1,4‐naphthoquinonato). The host–guest properties of [P1⊂ 1 ]6+ and [P2⊂ 1 ]6+ were studied in solution by NMR and UV/Vis spectroscopic methods, thus allowing the determination of the affinity constants. Moreover, the cytotoxicity of these water‐soluble host–guest systems was evaluated on human ovarian cancer cells.  相似文献   

2.
A dinuclear PdII complex possessing a cyclic ligand was developed as a novel doubly threaded [3]rotaxane scaffold and applied as a rotaxane cross‐linker reagent. The dinuclear complex (PdMC)2 was prepared by one‐step macrocyclization followed by the double palladation reaction. 1H NMR analysis and UV/Vis measurements revealed the formation of a doubly threaded pseudo[3]rotaxane by the complexation of (PdMC)2 with 2 equivalents of 2,6‐disubstituted pyridine 3 through double metal coordination. The treatment of (PdMC)2 with 2 equivalents of 4‐vinylpyridine (VP) afforded a doubly threaded [3]rotaxane cross‐linker (PdMC‐VP)2 . Radical co‐polymerization of VP and t‐butylstyrene in the presence of (PdMC‐VP)2 afforded a stable rotaxane cross‐linked polymer (RCP). An elastic RCP was also prepared by using n‐butyl acrylate as a monomer. The obtained RCPs exhibited higher swelling ability and higher mechanical toughness compared with the corresponding covalent cross‐linked polymers.  相似文献   

3.
Cup‐shaped nanocarbons (CNC) generated by the electron‐transfer reduction of cup‐stacked carbon nanotubes have been functionalized with porphyrins (H2P) as light‐capturing chromophores. The resulting donor–acceptor nanohybrid has been characterized by thermogravimetric analysis (TGA), Raman and IR spectroscopy, transmission electron microscopy, elemental analysis, and UV/Vis spectroscopy. The weight of the porphyrins attached to the cup‐shaped nanocarbons was determined as 20 % by TGA and elemental analysis. The UV/Vis absorption spectrum of CNC? (H2P)n in DMF agrees well with that obtained by the superposition of reference porphyrin (ref‐H2P) and cup‐shaped nanocarbons. The photoexcitation of the CNC? (H2P)n nanohybrid results in formation of the charge‐separated (CS) state to attain the longest CS lifetime (0.64±0.01 ms) ever reported for donor–acceptor nanohybrids, which may arise from efficient electron migration following the charge separation. The formation of a radical ion pair was detected directly by electron spin resonance (ESR) measurements under photoirradiation of CNC? (H2P)n with a high‐pressure mercury lamp in frozen DMF at 153 K. The observed ESR signal at g=2.0044 agrees with that of ref‐H2P.+ produced by one‐electron oxidation with [Ru(bpy)3]3+ in deaerated CHCl3, indicating the formation of H2P.+. The electron‐acceptor ability of the reference CNC compound (ref‐CNC) was also examined by the electron‐transfer reduction of ref‐CNC by a series of semiquinone radical anions.  相似文献   

4.
Host–guest interactions of a molecular tweezer complex 1 with various planar organic molecules including polyaromatic hydrocarbons (PAHs) were investigated by 1D and 2D 1H NMR spectroscopy, UV/Vis absorption and emission titration studies. 2D and DOSY NMR spectroscopies support the sandwiched binding mode based on 1:1 host–guest interactions. The binding constants (KS) of complex 1 for various PAHs were determined by NMR titration studies and the values were found to span up to an order of 104 M ?1 for coronene to no observable interaction for benzene, indicating that the π‐surface area is important for such host–guest interactions. The substituent effect on the host–guest interaction based on the guest series of 9‐substituted anthracenes was also studied. In general, a stronger interaction was observed for the anthracene guest with electron‐donating groups, although steric and π‐conjugation factors cannot be completely excluded. The photophysical responses of complex 1 upon addition of various PAHs were measured by UV/Vis and emission titration studies. The UV/Vis absorption spectra were found to show a drop in absorbance of the metal‐to‐ligand charge‐transfer (MLCT) and ligand‐to‐ligand charge‐transfer (LLCT) admixture band upon addition of various guest molecules to 1 , whereas the emission behavior was found to change differently depending on the guest molecules, showing emission enhancement and/or quenching. It was found that emission quenching occurred either via energy transfer or electron transfer pathway or both, while emission enhancement was caused by the increase in rigidity of complex 1 as a result of host–guest interaction.  相似文献   

5.
Chlorophylls and their related compounds prominently feature a Mg2+ ion in the center of a porphyrine, with an intermolecular fifth coordination usually observed to place the ion out of the macrocyclic plane. Herein, we assess the role of a potential intramolecular η2–(C = C)Mg interaction and compare it to the intermolecular coordination from the Hystidine groupt to Mg2+ for Bacterichlorophyll–a (Bchl–a), the main photosynthetic pigment in the Fenna–Matthews–Olson complex present in green and purple bacteria. The influence of this fifth coordination on the UV‐Vis spectroscopy (CAM‐B3LYP/cc‐pVDZ), and the concomitant change in geometry around Mg in Bchl–a from planar to pyramidal is assessed by the quantum theory of atoms in molecules based non–covalent interactions scheme and through energetic analysis via natural bond orbital population methods at the M06‐2X/cc‐pVDZ and compared to the reference multi–hapto compound, magnesocene, Cp2Mg.  相似文献   

6.
We report here electrochemical synthesis of novel soluble donor–acceptor (D–A) polymer with suitably functionalized perylenetetracarboxylic diimide dye derivative covalently linked to carbazole moiety (Cbz‐PDI). The band gap, Eg was measured using UV–Vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Efficient intramolecular electron transfer from carbazole‐donor to perynediimide‐acceptor leads to remarkable fluorescence quenching of the perylene core. Furthermore, spectroelectrochemical property and surface morphology of the polymer film were investigated. Characteristic monoanion and dianion radical bands on the UV–Vis absorption spectra attributed to the electrochemical reduction of the neutral polymer were observed. During the reduction process, red color of the film turned into blue and violet, respectively. Finally, the photovoltaic performance of the D–A double‐cable polymer was checked and nearly 0.1% electrical conversion efficiency is obtained under simulated AM 1.5 solar light with 100 mW/cm2 radiation power. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6280–6291, 2009  相似文献   

7.
To address the obstacles facing the use of palladium‐based homogeneous and heterogeneous catalysts in C─C cross‐coupling reactions, a novel semi‐heterogeneous support was developed based on hyperbranched poly(ethylene glycol)‐block ‐poly(citric acid)‐functionalized Fe3O4 magnetic nanoparticles (Fe3O4@PCA‐b ‐PEG). Because of the surface modification of the Fe3O4 nanoparticles with amphiphilic and hyperbranched polymers (PCA‐b ‐PEG), these hybrid materials are not only soluble in a wide range of solvents (e.g. water, ethanol and dimethylformamide) but also are able to trap Pd2+ ions via complex formation of free carboxyl groups of the PCA dendrimer with metal ions. The reduction of trapped palladium ions in the dendritic shell of Fe3O4@PCA‐b ‐PEG leads to immobilized palladium nanoparticles. The morphology and structural features of the catalyst were characterized using various microscopic and spectroscopic techniques. The catalyst was effectively used in the palladium‐catalysed Mizoroki–Heck coupling reaction in water as a green solvent. In addition, the catalyst can be easily recovered from the reaction mixture by applying an external magnetic field and reused for more than ten consecutive cycles without much loss in activity, exhibiting an example of a sustainable and green methodology.  相似文献   

8.
By employing the subcomponent self‐assembly approach utilizing 5,10,15,20‐tetrakis(4‐aminophenyl)porphyrin or its zinc(II) complex, 1H ‐4‐imidazolecarbaldehyde, and either zinc(II) or iron(II) salts, we were able to prepare O‐symmetric cages having a confined volume of ca. 1300 Å3. The use of iron(II) salts yielded coordination cages in the high‐spin state at room temperature, manifesting spin‐crossover in solution at low temperatures, whereas corresponding zinc(II) salts led to the corresponding diamagnetic analogues. The new cages were characterized by synchrotron X‐ray crystallography, high‐resolution mass spectrometry, and NMR, Mössbauer, IR, and UV/Vis spectroscopy. The cage structures and UV/Vis spectra were independently confirmed by state‐of‐the‐art DFT calculations. A remarkably high‐spin‐stabilizing effect through encapsulation of C70 was observed. The spin‐transition temperature T 1/2 is lowered by 20 K in the host–guest complex.  相似文献   

9.
Anthracene‐functionalized oxanorbornene monomer and oxanorbornenyl polystyrene (PS) with ω‐anthracene end‐functionalized macromonomer were first polymerized via ring‐opening metathesis polymerization using the first‐generation Grubbs' catalyst in dichloromethane at room temperature and then clicked with maleimide end‐functionalized polymers, poly(ethylene glycol) (PEG)‐MI, poly(methyl methacrylate) (PMMA)‐MI, and poly(tert‐butyl acrylate) (PtBA)‐MI in a Diels–Alder reaction in toluene at 120 °C to create corresponding graft copolymers, poly(oxanorbornene)‐g‐PEG, poly(oxanorbornene)‐g‐PMMA, and graft block copolymers, poly(oxanorbornene)‐g‐(PS‐b‐PEG), poly(oxanorbornene)‐g‐(PS‐b‐PMMA), and poly(oxanorbornene)‐g‐(PS‐b‐PtBA), respectively. Diels–Alder click reaction efficiency for graft copolymerization was monitored by UV–vis spectroscopy. The dn/dc values of graft copolymers and graft block copolymers were experimentally obtained using a triple detection gel permeation chromatography and subsequently introduced to the software so as to give molecular weights, intrinsic viscosity ([η]) and hydrodynamic radius (Rh) values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

11.
A novel hydrolytic stable CoII–organic framework, namely poly[[bis(2‐amino‐4‐sulfonatobenzoato‐κO1)tetraaquatris{μ‐1,4‐bis[(imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}dicobalt(II)] tetrahydrate], {[Co(C7H5NO5S)(C14H14N4)1.5(H2O)2]·2H2O}n, ( 1 ), based on multifunctional 2‐amino‐5‐sulfobenzoic acid (H2asba) and the auxiliary flexible ligand 1,4‐bis[(imidazol‐1‐yl)methyl]benzene (bix), was prepared using the solution evaporation method. The purity of ( 1 ) was confirmed by elemental analysis and powder X‐ray diffraction (PXRD) analysis. Complex ( 1 ) shows a novel 1D→2D interpenetrating network, which is further extended into a 3D supramolecular framework with channels occupied by the lattice water molecules. The 2‐amino‐4‐sulfonatobenzoate (asba2?) ligand adopts a monodentate coordination mode. The bix ligands exhibit gauche–gauche (GG) and trans–trans (TT) conformations. A detailed analysis of the solid‐state diffuse‐reflectance UV–Vis spectrum reveals that an indirect band gap exists in the complex. The band structure, the total density of states (TDOS) and the partial density of states (PDOS) were calculated using the CASTEP program. The calculated band gap (Eg) matches well with the experimental one. The complex exhibits a reversible dehydration–rehydration behaviour. Interestingly, gas sorption experiments demonstrate that the new fully anhydrous compound obtained by activating complex ( 1 ) at 400 K shows selective adsorption of CO2 over N2. Complex ( 1 ) retains excellent framework stability in a variety of solvents and manifests distinct solvent‐dependent fluorescence properties. Moreover, the complex shows multiresponsive fluorescence sensing for some nitroaromatics in aqueous medium.  相似文献   

12.
Two types of multiarm star block copolymers: (polystyrene)m‐poly(divinylbenzene)‐poly(methyl methacrylate)n, (PS)m‐polyDVB‐(PMMA)n and (polystyrene)m‐poly(divinylbenzene)‐poly(tert‐butyl acrylate)k, (PS)m‐polyDVB‐(PtBA)k were successfully prepared via a combination of cross‐linking and Diels–Alder click reactions based on “arm‐first” methodology. For this purpose, multiarm star polymer with anthracene functionality as reactive periphery groups was prepared by a cross‐linking reaction of divinyl benzene using α‐anthracene end functionalized polystyrene (PS‐Anth) as a macroinitiator. Thus, obtained multiarm star polymer was then reacted with furan protected maleimide‐end functionalized polymers: PMMA‐MI or PtBA‐MI at reflux temperature of toluene for 48 h resulting in the corresponding multiarm star block copolymers via Diels–Alder click reaction. The multiarm star and multiarm star block copolymers were characterized by using 1H NMR, SEC, Viscotek triple detection SEC (TD‐SEC) and UV. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 178–187, 2009  相似文献   

13.
Herein, we report the host–guest‐type complex formation between the host molecules cucurbit[7]uril (CB[7]), β‐cyclodextrin (β‐CD), and dibenzo[24]crown‐8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1 X3 as the guest component. The host–guest complex formation was studied in detail by using 1H NMR, 2D NOESY, UV/Vis fluorescence, and time‐resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β‐CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited‐state lifetime for the triphenylamine‐based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The Förster resonance energy transfer (FRET) process involving DB24C8 and 1 (PF6)3, as the donor and acceptor fragments, respectively, was established by electrochemical, steady‐state emission, and time‐correlated single‐photon counting studies.  相似文献   

14.
Co(III) complexes of tridentate Schiff base ligands derived from N‐(2‐hydroxybenzylideneamino)benzamide (H 2 L 1 ) and 2‐(2‐hydroxybenzylidene)hydrazine‐1‐carboxamide ( H 2 L 2 ) were synthesized and characterized using IR, Raman, 1H–NMR and UV–Vis spectroscopies. X‐ray single crystal structures of complexes 1 and 2 have also been determined, and it was indicated that these Co(III) complexes are in a distorted octahedral geometry. The cyclic voltammetry (CV) of the complexes indicates an irreversible redox behavior for both complexes 1 and 2 . The antibacterial effects of the synthesized compounds have been tested by minimum inhibitory concentration and minimum bactericidal concentration methods, which suggested that the metal complexes exhibit better antibacterial effects than the ligands against Gram‐positive bacteria. The effects of the drug (drug  =  ligands and complexes) on bovine serum albumin (BSA) were examined using circular dichroism (CD) spectropolarimetry, and it was revealed that the BSA (BSA, as a carrier protein) secondary structure changed in the presence of the drug. Interaction of the drug with calf‐thymus DNA (CT‐DNA) was investigated by UV–Vis absorption, fluorescence emission, CV and CD spectroscopy. Binding constants were determined using UV–Vis absorption. The results indicated that the studied Schiff bases bind to DNA, with the hyperchromic effect and non‐intercalative mode in which the metal complexes are more effective than ligands. Furthermore, molecular docking simulation was used to obtain the energetic and binding sites for the interaction of the complexes with Mycobacterium tuberculosis enoyl‐acyl carrier protein reductase (InhA), and results showed that complex 1 has more binding energy.  相似文献   

15.
A series of Ag‐enhanced TiO2–x/C composites (Ag/TiO2–x/C composites) with metal‐organic frameworks (MOFs) as precursors were prepared, and their photocatalytic activities were evaluated by the UV‐light driven photodegradation behaviors of methyl blue (MB). The as‐obtained samples were characterized by several techniques such as SEM, XRD, N2‐adsorption, XPS, UV/Vis spectrophotometry and UV/Vis diffuse‐reflectance spectra. The best photocatalytic performance was achieved in Ag/TiO2–x/C composite pyrolyzed at 1000 °C (ATC‐P10) due to rapid capture of electrons caused by silver doping, higher density of TiO2–x lattice oxygen vacancies for better trapping of electrons, and high surface area due to reduction and evaporation of metallic Zn. No obvious deactivation was observed after 10 cycles of UV‐light degradation of MB under the same experimental conditions. This report reveals a new approach to prepare stable and highly efficient UV‐light‐driven photocatalysts for organic pollutants in water.  相似文献   

16.
A series of novel amphiphilic diblock copolymers composed of hydrophilic linear poly(ethylene glycol) (PEG) and linear brush hydrophobic polydimethylsiloxane (PDMS) were synthesized. Three different molecular weights of monomethyl ether PEG were initially functionalized with 2‐bromoisobutyryl bromide to afford macroinitiators suitable for atom‐transfer radical polymerization. The macroinitiators were characterized by gel permeation chromatography, 1H and 13C nuclear magnetic resonance spectroscopic analysis and matrix‐assisted laser desorption ionization time‐of‐flight mass spectroscopy. The three different molecular weight macroinitiators were then chain extended with monomethacryloxypropyl‐terminated PDMS and photoactive 2‐(methylacyloyloxy)ethyl anthracene‐9‐carboxylate in different molar ratios to afford a series of photoresponsive amphiphilic diblock copolymers with high conversions. Self‐assembly of these linear–linear brush diblock copolymers in N,N‐dimethylformamide afforded nanoparticles with hydrodynamic diameters (dH) ranging from 41 to 268 nm, as determined by dynamic light scattering analysis. Crosslinking and stabilization of the nanoparticles was achieved via [4+4] photodimerization of the anthracene moieties upon exposure to UV radiation at 365 nm with the reverse reaction studied at a wavelength of 254 nm. Transmission electron microscopy revealed that the self‐assembled nanoparticles and their crosslinked derivatives had spherical morphologies. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1251–1262  相似文献   

17.
The multistate redox‐active/multi‐interactive ligand 5,5′,8,8′‐tetra(4‐pyridyl)‐2,2′‐(1,4‐phenylene)bis‐1H‐perimidine (H2TPP) was designed and synthesized. H2TPP undergoes four one‐electron oxidation steps, and was used for the preparation of a multistate redox‐active coordination network in a solid–liquid interface reaction using molten Cd2+ salts. The multiple redox states of H2TPP were confirmed spectroscopically by stepwise four‐electron oxidation. Spectroscopic analysis indicated that the mixed‐valence states of the ligand are class II on the UV/Vis/NIR timescale and borderline class II/class III on the ESR timescale.  相似文献   

18.
For the preparation of core‐shell nanoparticles containing functional nanomaterials, a photo‐cross‐linkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)‐b‐poly(2‐cinnamoyloxyethyl methacrylate)‐b‐poly(methyl methacrylate) (PEG‐PCEMA‐PMMA), was synthesized. This triblock copolymer was then used to encapsulate Au nanoparticles or pyrene. The triblock copolymer of PEG‐b‐poly(2‐hydroxyethyl methacrylate)‐b‐PMMA (PEG‐PHEMA‐PMMA) (Mn = 15,800 g/mol, Mw/Mn = 1.58) was first synthesized by activators generated by electron transfer atom transfer radical polymerization. Its middle block was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 45, 13, and 98, respectively. PMMA‐tethered Au nanoparticles (with an average diameter of 3.0 nm) or pyrene was successfully encapsulated within the PEG‐PCEMA‐PMMA micelles. The intermediary layers of the micelles were then cross‐linked by UV irradiation. The spherical structures of the PEG‐PCEMA‐PMMA micelles containing Au nanoparticles or pyrene were not changed by the photo‐cross‐linking process and they showed excellent colloidal stability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4963–4970, 2009  相似文献   

19.
A ligand containing the thiazolo[5,4‐d]thiazole (TzTz) core (acceptor) with terminal triarylamine moieties (donors), N,N′‐(thiazolo[5,4‐d]thiazole‐2,5‐diylbis(4,1‐phenylene))bis(N‐(pyridine‐4‐yl)pyridin‐4‐amine ( 1 ), was designed as a donor–acceptor system for incorporation into electronically active metal–organic frameworks (MOFs). The capacity for the ligand to undergo multiple sequential oxidation and reduction processes was examined using UV/Vis‐near‐infrared spectroelectrochemistry (UV/Vis‐NIR SEC) in combination with DFT calculations. The delocalized nature of the highest occupied molecular orbital (HOMO) was found to inhibit charge‐transfer interactions between the terminal triarylamine moieties upon oxidation, whereas radical species localized on the TzTz core were formed upon reduction. Conversion of 1 to diamagnetic 2+ and 4+ species resulted in marked changes in the emission spectra. Incorporation of this highly delocalized multi‐electron donor–acceptor ligand into a new two‐dimensional MOF, [Zn(NO3)2( 1 )] ( 2 ), resulted in an inhibition of the oxidation processes, but retention of the reduction capability of 1 . Changes in the electrochemistry of 1 upon integration into 2 are broadly consistent with the geometric and electronic constraints enforced by ligation.  相似文献   

20.
A series of fluorescently labeled core cross‐linked star (CCS) polymers were synthesized via the “arm‐first” approach, employing atom transfer radical polymerization (ATRP) to control the resulting architecture. The initiator p‐toluenesulfonyl chloride (TsCl) was used to synthesize “living” poly(methyl methacrylate) (PMMA) macroinitiator, which was subsequently cross‐linked to generate the CCS polymers. Divinylbenzene (DVB) was used as the cross‐linker and 7‐[4‐(trifluoromethyl)coumarin] methacrylamide ( F1 , λex = 343 nm) was added as a fluorescent labeling monomer. A range of PMMA/DVB/ F1 based CCS polymers were synthesized with the core domain made selectively fluorescent by using varying amounts of monomer F1 . The core functionalized stars were characterized using gel permeation chromatography (GPC) equipped with multi‐angle laser light scattering (MALLS), refractive index (RI), and UV–visible detectors. The fluorescence quantum yield (ΦF) and the amount of fluorescent monomer incorporated into the core were quantified by UV–visible and fluorescence spectrophotometry. It was recognized that the overall molecular weights of the stars produced, along with their core molecular weight, decreased as the mol % of monomer F1 was increased relative to cross‐linker. Visual confirmation of F1 incorporation was obtained by fluorescence microscopy of thin polymer films cast on glass substrates. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2422–2432, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号