首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kinetic simulations are reported, where the ATRP equilibrium constant KATRP is varied and the rates and degree of control in different ATRP systems are evaluated. The apparent rate constant kapp increases with increasing KATRP, but a maximum is reached. The limit of control is passed before the maximum, i.e. when KATRP is increased further, apparent first‐order kinetics and well‐controlled molecular weights will no longer be obtained. The equilibrium constant at which the limit of control is reached varies linearly with the propagation rate constant. This enables the design of well controlled ATRP systems. The influence of the conversion and chain length dependence of the termination rate constant on the simulation results is discussed.

  相似文献   


2.
Kinetic simulations using the composite kt model allows a better understanding of the effects of the persistent radical affecting ATRP or for that matter any activation–deactivation system. It also provides a better fit to experimental data in either bulk or solution conditions for ATRP polymerizations carried out at 110 °C. The results suggest that the composite model has broad utility over a wide range of experimental conditions and temperatures. The advantage of incorporating an accurate kt model is that one can then use simulations as predictive tool to obtain polymers with higher chain‐end fidelity or polymers with low PDI values. This becomes important when attempting to use the chain‐ends for further functionalization to make complex polymer architectures. This model can also be used in simulations of miniemulsion or seeded emulsions to determine the effect of compartmentalization with particle size.

  相似文献   


3.
Initiators for continuous activator regeneration in atom transfer radical polymerization (ICAR ATRP) is a new technique for conducting ATRP. ICAR ATRP has many strong advantages over normal ATRP, such as forming the reductive transition metal species in situ using oxidatively stable transition metal species and a lower amount of metal catalyst in comparison with the normal ATRP system. In this work, the iron‐mediated ICAR ATRP of styrene and methyl methacrylate are reported for the first time using oxidatively stable FeCl3 · 6H2O as the catalyst in the absence of any thermal radical initiator. The kinetics of the polymerizations and effect of different polymerization conditions are studied. It is found that the polymerization of styrene can be conducted well even if the amount of iron(III ) is as low as 50 ppm.

  相似文献   


4.
Kinetic studies of the atom transfer radical polymerization (ATRP) of styrene are reported, with the particular aim of determining radical‐radical termination rate coefficients (<kt>). The reactions are analyzed using the persistent radical effect (PRE) model. Using this model, average radical‐radical termination rate coefficients are evaluated. Under appropriate ATRP catalyst concentrations, <kt> values of approximately 2 × 108 L mol?1 s?1 at 110 °C in 50 vol % anisole were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5548–5558, 2004  相似文献   

5.
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
We present results from kinetic studies on the surface‐initiated atom transfer radical polymerization in the preparation of polymer brush‐coated magnetic particles from a heterogeneous system. It is shown that a controlled reaction behavior and a reproducible surface functionalization with end‐tethered polymers are achieved, although the reaction advances gradually from a biphasic solid–liquid mixture to a stable colloidal dispersion of the nanoobjects. Although the initiator‐functional magnetite nanoparticles initially form a precipitate, the formation of a polymer layer on the particle surface in the course of the reaction contributes to a sterical stabilization in dispersion. We thoroughly investigated the development of the initial heterogeneous system with time and in various concentration regimes by simultaneously monitoring the monomer conversion, molar mass, the hydrodynamic diameter of the nanoobjects, and the magnetite content of the dispersions at different reaction times. The results indicate first‐order chain growth kinetics with respect to the monomer and narrow molar mass distributions, demonstrating good control on the particle architecture. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

7.
Batch and semibatch styrene polymerizations are carried out using a heterogeneous ATRP catalyst system that provides excellent molecular‐weight control. The observed initiator efficiency is lower for semibatch operation due to the high initiator concentrations required to make a low‐MW polymer. Experiments verified that the insoluble metal complex does not participate in the polymerization and that Cu(I) solubility is an order of magnitude higher than that of Cu(II). A mechanistic model, using kinetic coefficients from literature and the solubility data from this study, provides a good representation of the experimental results.

  相似文献   


8.
Kinetic Monte Carlo simulations are performed to investigate the capability of ICAR ATRP for the synthesis of well‐defined poly(isobornyl acrylate‐b‐styrene) block(‐like) copolymers using one‐pot semi‐batch and two‐pot batch procedures. The block copolymer quality is quantified via a block deviation (〈BD〉) value. For 〈BD〉 values lower than 0.30, the quality is defined as good and for well‐chosen polymerization conditions the formation of homopolymer chains upon addition of the second monomer can be suppressed. A better block quality is obtained when isobornyl acrylate is polymerized first. For lower Cu levels a one‐pot semi‐batch procedure allows a much faster ATRP and better control over the polymer properties than a two‐pot batch procedure.

  相似文献   


9.
Electron spin resonance (ESR) spectroscopy can contribute to understanding both the kinetics and mechanism of radical polymerizations. A series of oligo/poly(meth)acrylates were prepared by atom transfer radical polymerization (ATRP) and purified to provide well defined radical precursors. Model radicals, with given chain lengths, were generated by reaction of the terminal halogens with an organotin compound and the radicals were observed by ESR spectroscopy. This combination of ESR with ATRPs ability to prepare well defined radical precursors provided significant new information on the properties of radicals in radical polymerizations. ESR spectra of the model radicals generated from tert-butyl methacrylate precursors, with various chain lengths, showed clear chain length dependent changes and a possibility of differentiating between the chain lengths of observed propagating radicals by ESR. The ESR spectrum of each dimeric, trimeric, tetrameric, and pentameric tert-butyl acrylate model radicals, observed at various temperatures, provided clear experimental evidence of a 1,5-hydrogen shift.  相似文献   

10.
The combination of atom transfer radical polymerization (ATRP) and click chemistry has created unprecedented opportunities for controlled syntheses of functional polymers. ATRP of azido‐bearing methacrylate monomers (e.g., 2‐(2‐(2‐azidoethyoxy)ethoxy)ethyl methacrylate, AzTEGMA), however, proceeded with poor control at commonly adopted temperature of 50 °C, resulting in significant side reactions. By lowering reaction temperature and monomer concentrations, well‐defined pAzTEGMA with significantly reduced polydispersity were prepared within a reasonable timeframe. Upon subsequent functionalization of the side chains of pAzTEGMA via Cu(I)‐catalyzed azide‐alkyne cycloaddition (CuAAC) click chemistry, functional polymers with number‐average molecular weights (Mn) up to 22 kDa with narrow polydispersity (PDI < 1.30) were obtained. Applying the optimized polymerization condition, we also grafted pAzTEGMA brushes from Ti6Al4 substrates by surface‐initiated ATRP (SI‐ATRP), and effectively functionalized the azide‐terminated side chains with hydrophobic and hydrophilic alkynes by CuAAC. The well‐controlled ATRP of azido‐bearing methacrylates and subsequent facile high‐density functionalization of the side chains of the polymethacrylates via CuAAC offers a useful tool for engineering functional polymers or surfaces for diverse applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1268–1277  相似文献   

11.
A new method for determination of contributions of species present in low concentration in kinetic Monte Carlo (MC) simulations of chemical processes is proposed. It allows, for instance, to calculate of exact concentrations when species being of interest appear in MC experiments only for short time intervals. The method is based on monitoring of the cumulative life‐time of the investigated species under consideration as a function of the reaction time and subsequent differentiation of the resulting curve. It is especially useful for determination of distributions of low‐concentration active propagation species in radical polymerizations, both free and controlled ones. The method enables to reduce significantly a simulation scale required for determination of the concentrations of investigated species.

  相似文献   


12.
Although atom transfer radical polymerization (ATRP) is often a controlled/living process, the growth rate of polymer films during surface‐initiated ATRP frequently decreases with time. This article investigates the mechanism behind the termination of film growth. Studies of methyl methacrylate and methyl acrylate polymerization with a Cu/tris[2‐(dimethylamino)ethyl]amine catalyst system show a constant but slow growth rate at low catalyst concentrations and rapid growth followed by early termination at higher catalyst concentrations. For a given polymerization time, there is, therefore, an optimum intermediate catalyst concentration for achieving maximum film thickness. Simulations of polymerization that consider activation, deactivation, and termination show trends similar to those of the experimental data, and the addition of Cu(II) to polymerization solutions results in a more constant rate of film growth by decreasing the concentration of radicals on the surface. Taken together, these studies suggest that at high concentrations of radicals, termination of polymerization by radical recombination limits film growth. Interestingly, stirring of polymerization solutions decreases film thickness in some cases, presumably because chain motion facilitates radical recombination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 386–394, 2003  相似文献   

13.
Well‐defined polymer‐nanoparticle hybrids were prepared by a newly reported method: atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) mediated by iron catalyst. The kinetics of the surface‐initiated AGET ATRP of methyl methacrylate from the silica nanoparticles, which was mediated by FeCl3/triphenylphosphine as a catalyst complex, ascorbic acid as a reducing agent, N,N‐dimethylformamide as the solvent in the presence of a “sacrificial” (free) initiator, was studied. Both the free and grafted polymers were grown in a control manner. The chemical composition of the nanocomposites was characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and 1H nuclear magnetic resonance spectroscopy. Thermogravimetric analysis was used to estimate the content of the grafted organic compound, and transmission electron micrographs was used to observe the core‐shell structure of the hybrid nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2006–2015, 2010  相似文献   

14.
Efficient antibacterial surfactants have been prepared by the quaternization of the amino groups of poly(ethylene‐co‐butylene)‐b‐poly[2‐(dimethylamino)ethylmethacrylate] (PEB‐b‐PDMAEMA) diblock copolymers by octyl bromide. The diblock copolymers have been synthesized by ATRP of 2‐(dimethylamino)ethylmethacrylate (DMAEMA) initiated by an activated bromide‐end‐capped poly(ethylene‐co‐butylene). In the presence of CuBr, 1,4,7,10,10‐hexamethyl‐triethylenetetramine (HMTETA), and toluene at 50 °C, the initiation is slow in comparison with propagation. This situation has been improved by the substitution of CuCl for CuBr, all the other conditions being the same. Finally, the addition of an excess of CuCl2 (deactivator) to the CuCl/HMTETA catalyst is very beneficial in making the agreement between the theoretical and experimental number‐average molecular weights excellent. The antibacterial activity of PEB‐b‐PDMAEMA quaternized by octyl bromide has been assessed against bacteria and is comparable to the activity of a commonly used disinfectant, that is, benzalkonium chloride. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1214‐1224, 2006  相似文献   

15.
Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (ATRP) of hydrophilic monomers in heptane/ethanol latent‐biphasic system for copper catalyst separation and recycling have been realized for the first time at room temperature with different wavelengths of visible light LED (green, blue, purple, and white LED) as external stimulus, using 2‐bromophenylacetate as the ATRP initiator and camphorquinone/triethylamine as the photoinitiator. In this system, hybrid catalyst complex (HCc) is synthesized as a novel nonpolar catalyst, which is preferentially dissolved in heptane. The hydrophilic polymers obtained catalyzed by HCc in heptane/ethanol mixture solvent show typical “living” features, for example, the values of Mn,GPC increase linearly with monomer conversion up to quantitative level (>96%) and the molecular weight distributions were kept narrow (Mw/Mn < 1.20) throughout the polymerization process. It should be noted that the excellent controllability of this novel polymerization system can be achieved even after 5 catalyst recycling experiments under LED irradiation.

  相似文献   


16.
The evolution of the bromine end functionality during the bulk atom transfer radical polymerization (ATRP) of styrene [in the presence of the catalyst CuBr/4,4′‐di‐(5‐nonyl)‐2,2′‐bipyridine] was monitored with 600‐MHz 1H NMR. A decrease in the functionality versus the conversion was observed. The loss of functionality was especially significant at very high conversions (>90%). The experimental data were compared with a kinetic model of styrene ATRP. The latter indicated that the loss of chain‐end functionality was partly due to bimolecular terminations but was mainly due to β‐H elimination reactions induced by the copper(II) deactivator. These elimination reactions, which occurred later in the reaction, did not significantly affect the polymer molecular weights and the polydispersity. Therefore, a linear evolution of the molecular weights and low‐polydispersity polymers were still observed, despite a loss of functionality. Understanding these side reactions helped in the selection of the proper conditions for reducing the contribution of the elimination process and for preparing well‐defined polystyrene (number‐average molecular weight ~10,000 g mol?1; weight‐average molecular weight/number‐average molecular weight ~1.1) with a high functionality (92%). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 897–910, 2005  相似文献   

17.
Summary: The atom transfer radical polymerization of [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (METAC) has been studied under different [CuI]/[CuII] ratios. The reaction kinetics is followed by ellipsometry and quartz crystal microbalance and it was found that the reaction speed influences the grafting density of the polymer brushes. High [CuI]/[CuII] ratios, i.e., fast polymerizations, lead to less dense polymer brushes.

Plot of the frequency change of wet brushes on a QCM crystal (Δf) versus the dry thickness of brushes synthesized at different [CuI]/[CuII] ratios.  相似文献   


18.
The CuBr‐catalyzed polymerizations of styrene in the presence of a macrobicyclic mixed donor (N and S) encapsulating ligand, NH2capten, were carried out in toluene at 60 and 100 °C. The macrobicyclic nature of the ligand ensures that a transition metal ion is effectively encapsulated (caged) within the three‐dimensional cavity, resulting in activation of radicals through an outer‐sphere electron transfer mechanism. The kinetic data showed that the polymerizations were uncontrolled with little “living” behavior. The external orders of reaction in [CuBr], [NH2capten], and [CuBr2] were 0.5, 0.5, and close to zero, respectively, in agreement with the postulated mechanism of little or no deactivation of polymeric radicals and a significant amount of bimolecular termination. Although “living” behavior was not found using the cage ligand, it was decided that it would provide an ideal method for radical coupling experiments to make high‐molecular weight multiblock copolymers from a difunctional PSTY (Br‐PSTY‐Br, PDI = 1.11). The coupling reaction of Br‐PSTY‐Br using CuBr/NH2capten and excess Cu(0) in toluene at 100 °C gave no loss of the starting Br‐PSTY‐Br. Changing the solvent to the aprotic DMSO resulted in a significant increase in the rate of consumption of starting Br‐PSTY‐Br, with over 87% being used in under 10 min at 60 °C. In addition, higher molecular weight species were also formed, suggesting that OSET gives little or no side reactions on this time scale. It was initially thought that to get such high rates of reaction that the SET‐LRP disproportionation mechanism (2Cu(I) → Cu(0) + Cu(II)) was at play. However, UV–Vis experiments of the CuBr/NH2capten showed little or no disproportionation products. This important result suggests that DMSO catalyzes the OSET reaction through the stabilization of the radical‐anion intermediate, which then rapidly fragments to a polymeric radical. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 146–154, 2008  相似文献   

19.
A novel photo‐induced homogeneous atom transfer radical polymerization (ATRP) system is constructed using an organic copper salt (Cu(SC(S)N(C2H5)2)2) as a photo‐induced catalyst at 30 °C. Herein, N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) is used as a ligand, ethyl 2‐bromophenylacetate (EBPA) as an ATRP initiator, and (2,4,6‐trimethylbenzoyl) diphenylphosphine oxide (TPO) as a photo‐induced radical initiator to establish an ICAR (initiators for continuous activator regeneration) ATRP using methyl methacrylate (MMA) as a modal monomer. The effect of the concentration of the organic copper on the polymerization is investigated in detail. It is found that well‐controlled polymerization can be obtained even with the amount of (Cu(SC(S)N(C2H5)2)2 decreasing to a 1.56 ppm level, with the molecular weight of the resultant polymers increasing linearly with monomer conversion while maintaining a narrow molecular weight distribution (/ < 1.3).

  相似文献   


20.
Three kinds of alumina (acidic, neutral, and basic Al2O3) were effective as additives for the control and rate enhancement of iron‐mediated AGET (activators generated by electron transfer) ATRP (atom transfer radical polymerization) of methyl methacrylate (MMA) in the presence of limited amount of air, using FeCl3·6H2O as the catalyst, tetrabutylammonium bromide or tetra‐n‐butylphosphonium bromide as the ligand, ethyl 2‐bromoisobutyrate as the initiator, and ascorbic acid as the reducing agent. The conversion could be up to 83.9% in the case of basic Al2O3 and 75.3% with neutral Al2O3 only in 13 h, respectively, whereas no polymer could be obtained even in 50 h without additives. The polymers obtained with neutral and basic Al2O3 had controlled molecular weights and low Mw/Mn values (~1.2). Tacticities of the as‐prepared PMMA in the presence of these three kinds of Al2O3 were consistent with that obtained from conventional free‐radical polymerization of MMA. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号