首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   

2.
We fabricated films of cubic indium oxide (In2O3) by chemical bath deposition (CBD) for solar water splitting. The fabricated films were characterized by X‐ray diffraction analysis, Raman scattering, X‐ray photoelectron spectroscopy, and scanning electron microscopy, and the three‐dimensional microstructure of the In2O3 cubes was elucidated. The CBD deposition time was varied, to study its effect on the growth of the In2O3 microcubes. The optimal deposition time was determined to be 24 h, and the corresponding film exhibited a photocurrent density of 0.55 mA cm?2. Finally, the film stability was tested by illuminating the films with light from an AM 1.5 filter with an intensity of 100 mW cm?2.  相似文献   

3.
Summary: A controlled fabrication of rod‐like nanostructures of cadmium sulfide (CdS) incorporated into polymer fiber matrices has been developed by an electrospinning method. Here, poly(vinyl pyrrolidone) (PVP) was used as a polymer capping reagent, utilizing the interactions of cadmium ions with the carbonyl groups in the PVP molecules. The formation of CdS nanorods inside the PVP was carried out via the reaction of Cd2+ with H2S. SEM images showed that the electrospun films of PVP/CdS are composed of fibers with a diameter between 100 and 900 nm. TEM proved that most of the CdS nanorods are incorporated in the PVP fibrous film. The diameter of the rod is about 50 nm and the length is from 100 to 300 nm.

TEM image of the CdS nanorods formed in the PVP fibrous film.  相似文献   


4.
Homogeneous TiO2 single crystals with high exposure of {100} reactive facets were constructed as a seed monolayer on transparent conductive substrates with the desired orientation of reactive facets. A secondary growth process was subsequently carried out on the monolayer seed film to form an axis‐oriented continuous reactive film. Performing secondary growth with different precursors led to optimized conditions for high‐performance photoelectrochemical activity of anatase TiO2 films. Experimental techniques such as UV/Vis absorption spectroscopy, X‐ray diffraction, high‐resolution SEM, and photoelectrochemistry were used to characterize the structural, optical, and photoelectrochemical properties of the as‐synthesized films. As a photoanode in a photoelectrochemical cell, the axis‐oriented reactive film shows a maximum photocurrent density of 0.3 mA cm?2, as opposed to 0.075 mA cm?2 for non‐axis‐oriented (randomly oriented) TiO2 film.  相似文献   

5.
In this paper we report results of both, material preparation and magnetic characterisation, on CoFe2O4 particles of nanometric size formed by in‐situ precipitation within polymer gels. The size of the particles was controlled within a very narrow volume distribution and its average value was shifted from 2 to 10 nm. The existence of nanoparticles showing, at room temperature, coercive field values between 500 and 900 Oe and saturation magnetisations of about 500 emu/cm3, suggest to use these systems to get magnetic recording media with ultra high density. Poly(vinyl alcohol) (PVA) and Polystyrene (PS) films were prepared from this nanocomposite material. After a magnetic field treatment nanoparticles within the PVA films are free to rotate in response to an applied magnetic field. This PVA based nanocomposite film portends a new class of magnetic material with very little or no electrical and magnetic loss.  相似文献   

6.
Ion implantation of impurities into thin films of poly(p-phenylene sulfide) (PPS) is found to increase the conductivity of the material by up to 12 orders of magnitude. The increase is stable under exposure to ambient conditions, in contrast to the instability of the conductivity increases in PPS produced by chemical doping with AsF5. PPS films 0.1–0.2 μm thick are spin cast from solution onto interdigitated electrodes patterned on an oxidized silicon substrate. The room-temperature interelectrode resistance is measured as a function of implantation fluence. An estimate of film conductivity is obtained from this resistance with a simple model for the electrode and film geometry. A first experiment yielded similar conductivity increases for implantation of either arsenic or krypton. At a fluence of 1 × 1016cm?;2, which corresponds to an average impurity concentration of 2.5 × 1021cm?3, the conductivity reaches an apparently saturated value of 1.5 × 10?5 (Ω cm)?1. Infrared spectra of the films before and after implantation suggest that crosslinking may be present in the implanted films, and Auger studies show stoichiometric changes throughout the implanted layer. These results suggest that the observed conductivity changes are the result of molecular rearrangements produced by the implantation rather than the result of specific chemical doping. Specific chemical doping may, however, explain the results of a second experiment in which implantation of bromine resulted in substantially larger conductivities found to increase at an approximate linear rate from a value of 1.0 × 10?4 (Ω cm)?1 at a fluence of 1 × 1016 cm?2 to a value of 4.0 × 10?4 (Ω cm)?1 at a fluence of 3.16 × 1016 cm?2.  相似文献   

7.
We report the sequential electrochemical deposition of bimetallic films of porphyrins onto gold nanoparticles, previously deposited by SAM on gold surface. SEM analysis of EAu/polyFeCuPP and EAu/cys/AuNp/polyFeCuPP showed a heterogeneous distribution of material aggregates in the former (ca. 0.1–1 μm), whereas the nanocomposite film exhibits a highly microporous structure in the micrometer diameter range. The sensitivity for H2O2 detection increased four times (609±6 mA M?1 cm?2 vs. 157±3 mA M?1 cm?2) with a linear relationship in the range of 1×10?5–2×10?3 M. The application of the particulate material to the first‐generation biosensor of glucose is described.  相似文献   

8.
The electrochemical redox properties of a surface‐confined thin solid film of nanostructured cobalt(II) tetracarboxyphthalocyanine integrated with multiwalled carbon nanotube (nanoCoTCPc/MWCNT) have been investigated. This novel nanoCoTCPc/MWCNT material was characterized using SEM, TEM, zeta analysis and electrochemical methods. The nanoCoTCPc/MWCNT nanohybrid material exhibited an extra‐ordinarily high conductivity (15 mS cm?1), which is more than an order of magnitude greater than that of the MWCNT‐SO3H (527 µS cm?1) and three orders of a magnitude greater than the nanoCoTCPc (4.33 µS cm?1). The heterogeneous electron transfer rate constant decreases as follows: nanoCoTCPc/MWCNT (kapp≈19.73×10?3 cm s?1)>MWCNT‐SO3H (kapp≈11.63×10?3 cm s?1)>nanoCoTCPc (kapp≈1.09×10?3 cm s?1). The energy‐storage capability was typical of pseudocapacitive behaviour; at a current density of 10 µA cm?2, the pseudocapacitance decreases as nanoCoTCPc/MWCNT (3.71×10?4 F cm?2)>nanoCoTCPc (2.57×10?4 F cm?2)>MWCNT‐SO3H (2.28×10?4 F cm?2). The new nanoCoTCPc/MWCNT nanohybrid material promises to serve as a potential material for the fabrication of thin film electrocatalysts or energy‐storage devices.  相似文献   

9.
A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer‐by‐layer technique on a silicon oxide surface modified with a 3‐aminopropyltriethoxysilane (APTES) monolayer. The surface pKa value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer‐by‐layer assembly. Micropatterned polyelectrolyte films were obtained by deep‐UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm2 s?1 in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.  相似文献   

10.
Organic field‐effect transistors incorporating planar π‐conjugated metal‐free macrocycles and their metal derivatives are fabricated by vacuum deposition. The crystal structures of [H2(OX)] (H2OX=etioporphyrin‐I), [Cu(OX)], [Pt(OX)], and [Pt(TBP)] (H2TBP=tetra‐(n‐butyl)porphyrin) as determined by single crystal X‐ray diffraction (XRD), reveal the absence of occluded solvent molecules. The field‐effect transistors (FETs) made from thin films of all these metal‐free macrocycles and their metal derivatives show a p‐type semiconductor behavior with a charge mobility (μ) ranging from 10?6 to 10?1 cm2 V?1 s?1. Annealing the as‐deposited Pt(OX) film leads to the formation of a polycrystalline film that exhibits excellent overall charge transport properties with a charge mobility of up to 3.2×10?1 cm2 V?1 s?1, which is the best value reported for a metalloporphyrin. Compared with their metal derivatives, the field‐effect transistors made from thin films of metal‐free macrocycles (except tetra‐(n‐propyl)porphycene) have significantly lower μ values (3.0×10?6–3.7×10?5 cm2 V?1 s?1).  相似文献   

11.
We present a study of electrical and optical properties of nitrogen‐doped tin oxide thin films deposited on glass by the DC Magnetron Sputtering method. The deposition conditions to obtain p‐type thin films were a relative partial pressure between 7% and 11% (N2 and/or O2), a total working pressure of 1.8 mTorr and a plasma power of 30 W. The deposited thin films were oxidized after annealing at 250°C for 30 minutes. X‐ray diffraction results showed that the as‐deposited thin films exhibit a Sn tetragonal structure, and after annealing, they showed SnO tetragonal structure. X‐ray photoelectron spectroscopy results showed the presence of nitrogen in the samples before and after annealing. The measured physical parameters of the thin films were optical band gap between 1.92 and 2.68 eV, resistivity between 0.52 and 5.46 Ωcm, a concentration of p‐type carriers between 1018 and 1019 cm?3, and a Hall mobility between 0.1 and 1.94 cm2V?1s?1. These thin films were used to fabricate p‐type thin film transistors.  相似文献   

12.
A solution‐processed anthradithiophene derivative, 5,11‐bis(4‐triethylsilylphenylethynyl)anthradithiophene (TESPE‐ADT), is studied for use as the semiconducting material in thin‐film transistors (TFTs). To enhance the electrical performance of the devices, two different kinds of solution processing (spin‐coating and drop‐casting) on various gate dielectrics as well as additional post‐treatment are employed on thin films of TESPE‐ADT, and p‐channel OTFT transport with hole mobilities as high as ~0.12 cm2 V?1 s?1 are achieved. The film morphologies and formed microstructures of the semiconductor films are characterized in terms of film processing conditions and are correlated with variations in device performance.  相似文献   

13.
吴晓宏  ab  王松a  郭云b  谢朝阳b  韩璐a  姜兆华a 《中国化学》2008,26(10):1939-1943
在染料敏化太阳能电池中,TiO2膜和敏化剂决定着电池的总体效率和机械性能。本文以4-甲基吡啶为原料,经过偶联、氧化、配位和配体交换反应合成了cis-RuL2(SCN)2, (L=2,2’-联吡啶-4,4’-二羧酸),通过溶胶-凝胶法制备了TiO2膜。为了提高TiO2膜的光电性能,将不同浓度的La(NO3)3 (0.1%、0.3%、0.5%和0.7%) 加入到溶胶中,采用cis-RuL2(SCN)2将掺杂前后的TiO2膜进行敏化。利用X射线衍射仪、原子力显微镜和X射线光电子能谱对所得薄膜进行结构表征。结果表明,当La离子的浓度为0.5%时,太阳能电池的效率最高,短路电流和开路电压比未掺杂的分别提高了0.54 mA/cm2和30.41 mV。  相似文献   

14.
Micropatterns of proteins were created by using patterned ion beam irradiation onto a polyethylene film and graft polymerization of acrylic acid. Acrylic acid was selectively graft polymerized on the irradiated regions. The results of the grafting study revealed that the optimum fluence to achieve the maximum grafting degree was 1 × 1015 ions/cm2. Biotin was covalently immobilized on the grafted regions of the polyethylene film. Protein patterning was achieved through specific binding of biotin and streptavidin. The resolved protein patterns with the maximum fluorescence intensity were achieved on the poly(acrylic acid) (PAA)‐grafted polyethylene films prepared at the fluence of 1 × 1015 ions/cm2. This method can be used for patterning of various biomolecules and for further biological applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
2,3‐Dimethylpentacene (DMP) and 2,3‐dimethyltetracene (DMT) were synthesized, characterized and employed as the channel material in the fabrication of thin‐film transistors. The two methyl groups increase the chemical stability of the compounds versus the pristine acene analogues. The crystals maintain herringbone‐like molecular packing, whereas the weak dipole associated with the unsymmetrical molecule induces an anti‐parallel alignment among the neighbors. This structural motif favors layered film growth on SiO2/Si surface. Thin film transistors prepared on SiO2/Si and n‐nonyltrichlorosilane‐modified SiO2/Si at different substrate temperatures were compared. DMP‐based transistors prepared on rubbed n‐nonyltrichlorosilane‐modified SiO2/Si substrate gave the highest field‐effect mobility of 0.46 cm2/Vs, whereas DMT‐based transistor gave a mobility of 0.028 cm2/Vs.  相似文献   

16.
Mesoporous silica thin films encapsulating a molecular iron‐triazole complex, Fe(Htrz)3 (Htrz=1,2,4,‐1H‐triazole), have been generated by electrochemically assisted self‐assembly (EASA) on indium‐tin oxide (ITO) electrode. The obtained modified electrodes are characterized by well‐defined voltammetric signals corresponding to the FeII/III centers of the Fe(Htrz)3 species immobilized into the films, indicating fast electron transfer processes and stable operational stability. This is due to the presence of a high density of redox probes in the material (1.6×10?4 mol g?1 Fe(Htrz)3 in the mesoporous silica film) enabling efficient charge transport by electron hopping. The mesoporous films are uniformly deposited over the whole electrode surface and they are characterized by a thickness of 110 nm and a wormlike mesostructure directed by the template role played by Fe(Htrz)3 species in the EASA process. These species are durably immobilized in the material (they are not removed by solvent extraction). The composite mesoporous material (denoted Fe(Htrz)3@SiO2) is then used for the electrocatalytic detection of hydrogen peroxide, which can be performed by amperometry at an applied potential of ?0.4 V versus Ag/AgCl and by flow injection analysis. The organic‐inorganic hybrid film electrode displays good sensitivity for H2O2 sensing over a dynamic range from 5 to 300 μM, with a detection limit estimated at 2 μM.  相似文献   

17.
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004  相似文献   

18.
We have measured the Raman spectra of ethylene-vinyl alcohol copolymer (EVOH) and poly(vinyl alcohol) (PVOH). Spectra of 88% hydrolyzed PVOH were examined from the partially crystalline solid, from PVOH dissolved in both H2O and D2O, and from films precipitated from these solutions. The spectrum in H2O differs from that of the starting material by disappearance of sharp bands having Raman shift values of 1146 and 1093 cm?1, strengthening of a band near 915 cm?1, decrease in frequency of bands at 480, 1356, and 1441 cm?1, and increase in frequency of bands at 369, 413, 1023, 1371, and 2910 cm?1. The spectrum of the film shows partial reversal of these trends. With D2O as the solvent, the band shifts are slightly different from those listed above and new bands appear. These changes are indicative of loss of crystallinity, change in stereochemistry, and partial deuteration of hydroxyl during dissolution of this PVOH sample at room temperature. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Dendrite formation is a critical challenge for the applications of lithium (Li) metal anodes. In this work a new strategy is demonstrated to address this issue by fabricating an Li amalgam film on its surface. This protective film serves as a flexible buffer that affords repeated Li plating/stripping. In symmetric cells, the protected Li electrodes exhibit stable cycling over 750 hours at a high plating current and capacity of 8 mA cm?2 and 8 mAh cm?2, respectively. Coupled with high‐loading cathodes (ca. 12 mg cm?2) such as LiFePO4 and LiNi0.6Co0.2Mn0.2O2, the protected hybrid anodes demonstrate significantly improved cell stability, indicating its reliability for practical development of Li metal batteries. Interfacial analyses reveal a unique plating‐alloying synergistic function of the protective film, where Li beneath the film is actively involved in the electrode reactions upon cycling. Lithium amalgams enrich the alloy anode family and provide new perspectives for the rational design of dendrite‐free anodes.  相似文献   

20.
《Analytical letters》2012,45(11):1721-1734
Abstract

A novel approach to assemble an H2O2 amperometric biosensor was introduced. The biosensor was constructed by entrapping horseradish peroxidase (HRP) labeled nano‐scaled particulate gold (nano‐Au) (HRP‐nano‐Au electrostatic composite) in a new silica sol‐gel/alginate hybrid film using glassy carbon electrode as based electrode. This suggested strategy fully merged the merits of sol‐gel derived inorganic‐organic composite film and the nano‐Au intermediator. The silica sol‐gel/alginate hybrid material can improve the properties of conventional sol‐gel material and effectively prevent cracking of film. The entrapment of HRP in the form of HRP‐nano‐Au can not only factually prevent the leaking of enzyme out of the film but also provide a favorable microenvironment for HRP. With hydroquinone as an electron mediator, the proposed HRP electrode exhibited good catalytic activity for the reduction of H2O2. The parameters affecting both the qualities of sol‐gel/alginate hybrid film and the biosensor response were optimized. The biosensor exhibited high sensitivity of 0.40 Al mol?1 cm?2 for H2O2 over a wide linear range of concentration from 1.22×10?5 to 1.46×10?3 mol L?1, rapid response of <5 s and a detection limit of 0.61×10?6 mol L?1. The enzyme electrode has remarkable stability and retained 86% of its initial activity after 45 days of storage in 0.1 mol L?1 Tris‐HCl buffer solutions at pH 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号