首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 768 毫秒
1.
We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se)2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S2 precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se)2 layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se2 phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
《Surface science》1987,182(3):458-476
In an attempt to understand the relative importance of the various constituents of copper-zinc oxide catalysts for methanol synthesis (2H2 + CO → H3COH), we have prepared and characterized a number of single-crystal surface structures of Cu-ZnO. The model catalysts have also been tested in terms of their activity for methanol synthesis. The growth of vapor-deposited Cu overlayers on a ZnO(0001&#x0304;) (O face) single crystal has been investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), He+ ion scattering spectroscopy (ISS) and low-energy electron diffraction (LEED). The results are consistent with a growth model in which, at room temperature, the first monolayer spreads uniformly across the surface in a p(1 × 1) structure. As more Cu is added, thick Cu(111) islands grow and these are separated by large regions of the p(1 × 1)-Cu monolayer. The Cu(111) islands are rotationally aligned with the ZnO substrate, and at high enough coverages grow together to cover the ZnO. Increasing temperature favors more agglomeration. A clean Cu(111) crystal and one containing a ZnOx (x ⋍ 3) monolayer were also studied. None of these model catalysts gave rates of methanol production which were measurable in our present experimental limits (TOF < 2 × 10−3 molecules site−1 s−1) at 500–600 K and CO + H2 pressures up to 1500 Torr. Under these “reaction” conditions, the Cu in direct contact with ZnO may be slightly oxidized; all the other Cu is completely metallic. The Cu does not change its character between deposition and reaction conditions, even if heavily oxidized to CuO in between. The addition of CO2 at very high levels under reaction conditions does not change the character of a Cu(111) model catalyst surface, and no surface oxygen is ever observable after treatment under reaction conditions.  相似文献   

3.
Bis(pyrrol‐2‐ylmethyleneamine) ligands and their mononuclear monomeric and dinuclear dimeric self‐assembly complexes with Cu(II) were investigated by means of IR and Raman spectroscopies and density functional theory. The ground‐state geometries were calculated by using the Becke Lee Yang Parr composite exchange‐correlation functional (B3LYP) and a combined basis set (LanL2DZ for Cu; 6–31G(d) for C, H, N), and they were compared with the single‐crystal X‐ray diffraction (XRD) structures. The DFT‐calculated Cu N bond lengths are generally higher by 0.001–0.040 Å than those determined through XRD. The vibrational spectra were also calculated at the same level of theory for the optimized geometries. The calculated wavenumbers were scaled by a uniform scaling factor and compared with the experimental fundamentals. The predicted spectra are in good agreement with the experimental ones with the deviations generally less than 30 cm−1. In comparison with the spectra of the ligands, the coordination effect shifts the υ(CN) wavenumber by about 50 cm−1 toward a lower value. Because of the weak intermolecular C H···Cu hydrogen bond, the Cu N stretching mode is shifted toward a lower wavenumber. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Single‐crystal Raman and polycrystalline thin‐film infrared measurements have been obtained for the polar organic nonlinear optical material 2‐(α‐methylbenzylamino)‐5‐nitropyridine (MBANP). For comparison, thin‐film polycrystalline infrared measurements were also made on 2‐(α‐methylbenzylamino)‐3,5‐dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the N H bond. The most intense scattering and absorption arose from the αbb component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b‐axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron–phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single‐crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm−1 and a high damage threshold. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
《Surface science》1986,177(2):L971-L977
Molecular oxygen adsorbed on (110) and polycrystalline Cu surfaces has been investigated by UPS, XPS, AES, HREELS and LEED. Molecularly adsorbed O2 on the (110) surface shows the characteristic three-peak He II spectrum due to πg, πu and σg orbitals, accompanied by an O-O stretching frequency at 660 cm−1. On the polycrystalline Cu surface, adsorbed O2 shows the three peak He II spectra with a considerably smaller separation between the πu and σg band and two O-O stretching bands at 610 and 880 cm−1. O2 adsorbed on the Cu(110) surface gives rise to a (1 × 1) LEED pattern and characteristic K π1π1 transition in the Auger spectrum.  相似文献   

6.
《Surface science》1989,220(1):L657-L666
The various modes of hydrogen uptake exhibited by Nd overlayers and Nd/Cu ultra thin alloy films on Cu(100) have been investigated by LEED, UPS, XPS and thermal desorption measurements. Ultra thin Nd overlayers exhibit very low sticking probabilities for H2 (~10−4) — far lower than the values characteristic of thick Nd films. This behaviour is associated with the unusual surface structure adopted by the rare earth when present as a very thin film. Codeposition of Nd and H2 leads to the formation of sorbed hydrogen and is accompanied by valence charge transfer from Nd to H. The kinetics of H2 desorption from alloy films and Nd overlayers are markedly different: this feature provides a sensitive test for the overlayer → alloy transformation.  相似文献   

7.
The adsorption of benzotriazole (BTAH or C6N3H5) on a Cu(1 1 1) surface is investigated by using first principle density functional theory calculations (VASP). It is found that BTAH can be physisorbed (<0.1 eV) or weakly chemisorbed (∼0.43 eV) onto Cu(1 1 1), and the chemical bond is formed through nitrogen sp2 lone pairs. The weak chemisorption can be stabilized by reaction with neighboring protonphilic radicals, like OH. Furthermore, the geometries and associated energies of intermolecular hydrogen bonds between adsorbates on Cu(1 1 1) are also calculated. A model of the first layer of BTAH/BTA on Cu(1 1 1) surface is developed based on a hydrogen bond network structure.  相似文献   

8.
The formation of metallic adsorption layers was studied in solutions of Cu2+, Bi3+, Pb2+, Tl+ and Sb3+ at (111), (100) and (110) planes of gold single crystal electrodes. Potentiodynamic desorption spectra were recorded with a sweep rate of 20 mV s?1 for all systems. Characteristic peak structures were obtained which depend strongly on the nature of the adsorbate as well as on the substrate orientation. The half width of the peaks indicates attraction and repulsion respectively for various systems. In most systems more than one peak was observed. This is explained by the formation of various ordered structures. At low coverages peak charge data obtained by integration of current/time curves yield surface concentrations which fit those of ordered structures well, e.g. c(2×2) on (100) or p(3×3) R 30° on (111). The adsorption behaviour of the (110) plane is similar in all systems because atomic chains seem to be generally stable. Near the equilibrium potential of the correspondent metal electrode, ?r = 0, a “mono-molecular” adsorption layer was found for Cu2+, Pb2+ and Bi3+. In the case of the small copper atom, a 1:1 adsorption was found for all planes. Larger atoms like bismuth and lead form epitactic layers at low coverages; at high coverages they form close-packed monolayers with surface concentrations independent of the substrate structure but decreasing with increasing adsorbate radius. The coulometric data for antimony and thallium are not so conclusive. Measurements with various sweep rates show that the adsorption reaction is a slow potential dependent process in various systems. The underpotential/work function correlation of Kolb, Gerischer and Przasnyski is discussed with respect to these experiments. It follows that this concept developed for polycrystalline electrodes is qualitatively valid for (110), but not clearly so for (100) and (111).  相似文献   

9.
The present work is an attempt to prepare well defined surfaces of Cu(In,Ga)Se2 (CIGS) thin films in order to answer to basic questions about the relationship between bulk and surface composition. The approach is to use an oxidative etch with an aqueous bromine solution, known to lead to specular surfaces. The CIGS surface is then analyzed by mechanical profilometry, SEM and XPS, allowing for determination of the surface roughness and the nature of surface species. After short time bromine etch, a Se0 film is formed on the CIGS surface which can be completely removed by KCN treatment, leaving a CIGS specular surface. An highlight result is that under specific conditions, the surface composition is close to the stoichiometry of the Cu(In,Ga)3Se5 copper deficient phase. This is the first time that such a study is conducted on technology relevant thin polycrystalline CIGS film. It is expected that the method described will help conducting experiments (e.g. Angle resolved XPS, SIMS, etc.) with an improved resolution.  相似文献   

10.
采用普通固态反应法制备了名义组分为Bi2.0-xPbxSr1.9Ca2.2Cu3.3Oy超导体,并系统研究了样品的X射线衍射谱。结果表明:富Ca富Cu加速了2223相形成,拓宽了Bi系的单相化烧结温区,并获得了品质优良的110K单相多晶样品;低温退火有助于提高样品的单相化程度。 关键词:  相似文献   

11.
Cu(I) complexes of the type [Cu(L)(PPh3)2]+, where L is the bidentate ligand 4,7‐diphenyl‐1, 10‐phenanthroline (dip) and 3,4,7,8‐tetramethyl‐1,10‐phenanthroline (tem) and their perdeuterated analogues, have been synthesised and the transient resonance Raman spectra of these complexes have been measured. The spectra show two sets of bands, one due to the PPh3 ligands and the other due to L.− created through the metal‐to‐ligand charge transfer transition. Density functional theory calculations have been used to model ligands and complexes in the ground state and good agreement has been found between calculated and measured bands with a mean absolute deviation of 8–10 cm−1 for the ligands and 5 cm−1 for the complexes. Shifts in the bands due to deuteration have also been well predicted, with the shifts for most modes predicted to within 10 cm−1. The structure and spectra of the excited states have been modelled using two approaches. The reduced state [Cu(L.−)(PH3)2] was used for both complexes to predict the changes in the structure of the polypyridyl ligand and for [Cu(dip)(PPh3)2]+ the triplet state was also optimised. Both approaches show that similar structural changes in the ligand are predicted. In the case of [Cu(dip)(PPh3)2]+* and [Cu(dip.−)(PPh3)2], the calculated states are 3A2 and 2A2, respectively, consistent with experiment. Calculations on [Cu(tem)(PPh3)2]+* give a 3B1 state. This is not consistent with experimental results. For [Cu(tem.−)(PPh3)2] both the 2B1 and 2A2 states may be calculated and the experimental spectrum of [Cu(tem)(PPh3)2]+* is closer to that of the 2A2 [Cu(tem.−)(PPh3)2] species. Calculated wavenumbers are compared to measured transient resonance Raman L.− bands and found to have a mean absolute deviation of 8 cm−1 for the triplet state of [Cu(dip)(PPh3)2]+ and 16 cm−1 for the reduced state of [Cu(tem)(PPh3)2]+. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A Fourier Transform infrared spectrometer has been attached to an ultrahigh vacuum (UHV) apparatus in order to perform reflection-absorption infrared Spectroscopy (RAIRS) of adsorbed species on well-defined surfaces.An infrared spectrum of carbon monoxide (CO) adsorbed at 90 K on Cu(111) has been measured using a resolution of 2 cm−1 and a measuring time of 60 s. Coverages below 1 % of a monolayer are easily detectable.Tetracyanoethylene (TCNE) has been adsorbed at various coverages at 100 K on Cu(111). Strongly red-shifted CN stretchings modes due to charged TCNE adspecies are observed at low coverage. The RAIRS spectrum of the condensed phase is characteristic of crystalline TCNE.Finally, isotopically labeled 12C and 13C acetonitrile (CH3CN) has been adsorbed on Cu(111) as multilayers. Shifts caused by isotopic labeling as small as 3 cm−1 are easily detected.  相似文献   

13.
The single‐crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2, respectively, and the non‐aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise alternating layers of [Sb(OH)6]−1 octahedra and mixed [M(H2O)6]+2/[Sb(OH)6]−1 octahedra. Mopungite comprises hydrogen‐bonded layers of [Sb(OH)6]−1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb O symmetric stretch of the [Sb(OH)6]−1 octahedron, which occurs at approximately 620 cm−1. The Raman spectrum of mopungite showed many similarities to spectra of the di‐octahedral minerals, supporting the view that the Sb octahedra give rise to most of the Raman bands observed, particularly below 1200 cm−1. Assignments have been proposed on the basis of the spectral comparison between the minerals, prior literature and density functional theory (DFT) calculations of the vibrational spectra of the free [Sb(OH)6]−1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6‐31G(d) and lanl2dz for the Sb atom. The single‐crystal spectra showed good mode separation, allowing most of the bands to be assigned to the symmetry species A or E. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The chemistry of a common copper deposition precursor, (hexafluoroacetylacetonate)Cu(vinyltrimethylsilane) ((hfac)Cu(VTMS)), and the chemistry of a hydrogenated form of one of its ligands, 1,1,1,5,5,5,-hexafluoro-2,4-pentanedione (hfacH) were examined by a combination of experimental surface analytical techniques and by computational analysis on a surface of TiCN diffusion barrier material deposited on a Si(1 0 0) single crystal. This surface proves to be very reactive. Although (hfac)Cu(VTMS) can be condensed at a submonolayer coverage in its molecular form at cryogenic temperatures of 100-130 K, hfacH reacts with the surface of the TiCN film even at these conditions. At room temperature, both (hfac)Cu(VTMS) and hfacH chemisorb on this substrate. VTMS is released by (hfac)Cu(VTMS) immediately upon adsorption. At this point, the hfac ligand is bound to the copper atom; it decomposes upon thermal annealing and is the primary source of fluorine, oxygen, and carbon contamination at the Cu/TiCN interface.  相似文献   

15.
Raman spectroscopy complemented with infrared spectroscopy has been used to study the rare‐earth‐based mineral decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5· 2H2O] and the spectrum compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands at 1056, 1070 and 1088 cm−1 attributed to the CO32− symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of the CO32− symmetric stretching vibration varies with the mineral composition. The Raman spectrum of decrespignyite shows bands at 1391, 1414, 1489 and 1547 cm−1, whereas the Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm−1, which are assigned to the (CO3)2−ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm−1 and are assigned to the (CO3)2−ν4 bending modes. Raman bands are observed for the carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite, indicating the presence of water and OH units in the mineral structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Reflection absorption infrared spectroscopy has been used in conjunction with LEED and surface potential measurements to study low temperature CO adsorption on the oxidised Cu surfaces Cu(111)O|32?2|, Cu(110)O(2 × 1) and Cu(110)Oc(6 × 2). On all three surfaces adsorption at 80 K yields surface potential changes in excess of 0.6 V and does not lead to the formation of an ordered overlayer. At high coverages the adsorption enthalpy is lower than on the clean surfaces. Infrared spectra show the growth of a doublet band with components initially at 2100 and 2117 cm?1 on the oxidised Cu(111) surface. Similar features seen on the oxidised Cu(110) surfaces are accompanied by a band at 2140 cm?1: a very weak band at the same frequency on oxidised Cu(111) is attributed to defect sites. Studies of the temperature dependence of the spectrum from oxidised Cu(111) lead to the conclusion that two different binding sites are occupied. Spectra of 12CO13CO mixtures show that the molecules occupying these sites are in close proximity to each other, and that the spectrum is subject to large but opposing coverage-dependent frequency shifts.  相似文献   

17.
The participation of hydrogen‐arsenate group (AsO3OH)2− in solid‐state compounds may serve as a model example for explaining and clarifying the behaviour of As and other elements during weathering processes in natural environment. The mineral geminite, a hydrated hydrogen‐arsenate mineral of ideal formula Cu(AsO3OH)·H2O, has been studied by Raman and infrared spectroscopies. Two samples of geminite of different origin were investigated and the spectra proved quite similar. In the Raman spectra of geminite, six bands are observed at 741, 812, 836, 851, 859 and 885 cm−1 (Salsigne, France), and 743, 813, 843, 853, 871 and 885 cm−1 (Jáchymov, Czech Republic). The band at 851/853 cm−1 is assigned to the ν1 (AsO3OH)2− symmetric stretching mode; the other bands are assigned to the ν3 (AsO3OH)2− split triply degenerate antisymmetric stretching mode. Raman bands at 309, 333, 345 and 364/310, 333 and 345 cm−1 are attributed to the ν2 (AsO3OH)2− bending mode, and a set of higher wavenumber bands (in the range 400–500 cm−1) is assigned to the ν4 (AsO3OH)2− split triply degenerate bending mode. A very complex set of overlapping bands is observed in both the Raman and infrared spectra. Raman bands are observed at 2289, 2433, 2737, 2855, 3235, 3377, 3449 and 3521/2288, 2438, 2814, 3152, 3314, 3448 and 3521 cm−1. Two Raman bands at 2289 and 2433/2288 and 2438 cm−1 are ascribed to the strong hydrogen bonded water molecules. The Raman bands at 3235, 3305 and 3377/3152 and 3314 cm−1 may be assigned to the ν OH stretching vibrations of water molecules. Two bands at 3449 and 3521/3448 and 3521 cm−1 are assigned to the OH stretching vibrations of the (AsO3OH)2− units. The lengths of the O H···O hydrogen bonds vary in the range 2.60–2.94 Å (Raman) and 2.61–3.07 Å (infrared). Two Raman and infrared bands in the region of the bending vibrations of the water molecules prove that structurally non‐equivalent water molecules are present in the crystal structure of geminite. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Single crystal electron paramagnetic resonance (EPR) studies on Cu(II)-doped magnesium potassium phosphate hexahydrate have been carried out at room temperature. The temperature dependence of g and A values has been obtained for the polycrystalline sample and the ground state is unambiguously identified. These results indicate the existence of a dynamic Jahn-Teller distortion for Cu(II) ion. The g and A tensor direction cosines are evaluated and compared with Mg-O directions, which confirms that Cu(II) enters substitutionally in the lattice.  相似文献   

19.
The surface relaxation and the formation of a single vacancy in very thin Cu (001) film formed by 2 ~ 14 atomic layers have been studied by using MAEAM and MD simulation. For the surface relaxtion, the highest surface energy is in the l = 2 atomic layers. The multilayer relaxation mainly occurs between the first two atomic layers, and the maximum contractive displacement is obtained in the very thin Cu (001) film formed by l = 3 atomic layers. For the vacancy formed in l′ = 1 of the very thin Cu (001) film formed by l = 2 ~ 14 layers, the most difficult site in the film formed by l = 3 atomic layers.  相似文献   

20.
Herein, a simple in situ charge/discharge activation strategy is proposed to synthesize Fe(OH)3 film on Fe foam as an efficient anode of supercapacitors. The physical characteristics of electrodes are characterized and the electrochemical energy storage performances are investigated. Importantly, it is demonstrated the as‐synthesized Fe(OH)3@Fe foam electrode adopted a novel Fe3+/Fe0 redox reaction mechanism for energy storage in alkaline electrolytes. Compared with previously reported Fe3+/Fe2+ mechanisms, the Fe3+/Fe0 redox couple shows a more promising application value (e.g., higher theoretical‐specific capacitance, excellent conductivity of its reduction state). As for supercapacitor anodes, the electrode achieves high areal capacitance of 5.55–3.94 F cm−2 at a current range of 20–200 mA cm−2 and shows good stability for high‐rate and long‐term cycling. The assembled single supercapacitor device gives a high energy density of 11.64–7.43 Wh m−2 at a power density of 157–1461 W m−2. More importantly, the as‐adopted in situ activation strategy may also have potential value for synthesizing other transition metal oxide‐based products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号