首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cyclometallated analogue of the well-known tris(2,2′-bipyridine)ruthenium(II) cation has been prepared from 2-phenylpyridine. The bis(2,2′-bipyridine)(2-phenylpyridine-C,N)ruthenium(II) cation is readily prepared from [Ru(bipy)2Cl2] and 2-phenylpyridine in the presence of silver(I); the spectroscopic and electrochemical properties of this species are compared with those of [Ru(bipy)3]2+.  相似文献   

2.
《Tetrahedron: Asymmetry》2001,12(16):2289-2293
The chiral [5-(4-hydroxybutyl)-5′-methyl-2,2′-bipyridine]-bis(2,2′-bipyridine)-ruthenium(II)-bis(hexafluoroantimonate) complex 3 was prepared and characterized by different NMR techniques and successfully separated into enantiomers by electrokinetic chromatography using anionic carboxymethyl-β-cyclodextrin as chiral mobile phase additive (CMPA). The optimum separation conditions were obtained with 40 mM borate buffer at pH 9.5 and 7.5 mg/mL of the chiral selector at 20°C.  相似文献   

3.
Photoelectroanalytical chemistry (PEAC) is a sensitive and selective technique for the detection and quantitation of tris(2,2′-bipyridine)ruthenium(II). Currently, the detection limit of this method is restricted by background photocurrent due to photochemical processes which occur on the electrode surface. Since these processes increase as the illuminated electrode area increases, experiments were carried out using a cylindrical carbon fiber as the working electrode in a non-flowing system. Results were compared to both a glassy carbon and a platinum macroelectrode. Determination of the signal photocurrent density for the fiber electrode showed it to be of the same order of magnitude as the larger electrodes, while the background photocurrent density was more than two orders of magnitude lower than at the larger electrodes. The signal-to-noise ratio for the microelectrode was also much higher than for either macroelectrode. On the basis of these results, a theoretical detection limit of approximately 10−9M is possible using a carbon fiber electrode in an ordinary (static) electrochemical cell.  相似文献   

4.
Utilization of 5′-amino-2,2′-bipyridine-5-carboxylic acid allows molecular design of ruthenium tris(bipyridine)-type complexes bearing two different functional groups. In this study, a novel ruthenium tris(bipyridine) derivative bearing viologen and tyrosine as an electron acceptor and donor, respectively, is synthesized. This synthesis exemplifies the effectiveness of the molecular design for functionalizing ruthenium bipyridine-type complexes. The photophysical properties are discussed in comparison with a reference ruthenium complex which has neither the electron acceptor nor donor.  相似文献   

5.
The cationic luminescence probe, tris(2,2′-bipyridyl)ruthenium(II) complex ([Ru(bpy)3]2+), was incorporated into laponite-modified glassy carbon electrode (GCE) via two strategies, namely, the adsorption and intercalation methods. These two incorporation methods resulted in different microenvironment for the immobilized [Ru(bpy)3]2+ within laponite as well as the different host–guest and guest–guest interactions. Herein, cyclic voltammetry and electrochemiluminescence (ECL) were innovatively performed to monitor the interactions. Tripropylamine (TPA) was used as coreactant in the electrochemical and ECL system.  相似文献   

6.
7.
Five substituted-2,2′-bipyridine ligands L, (4-(p-methylphenyl)-6-phenyl-2,2′-bipyridine (L1), 4-(p-bromophenyl)-6-(p-bromophenyl)-2,2′-bipyridine (L2), 4-(p-bromophenyl)-6-phenyl-2,2′-bipyridine (L3), 4-phenyl-6-(p-bromophenyl)-2,2′-bipyridine (L4), and 4-(p-fluorophenyl)-6-(p-fluorophenyl)-2,2′-bipyridine (L5) were synthesized by stepwise formation. Reaction of cis-[RuCl2(bpy)2]?2H2O or cis-[RuCl2(phen)2]?2H2O and the substituted-2,2′-bipyridine ligands in the presence of KPF6 afforded the corresponding cationic polypyridine-ruthenium complexes of the type [(bpy)2Ru(L)](PF6)2 (bpy = 2,2′-bipyridine, 15) or [(phen)2Ru(L)](PF6)2 (phen = 1,10-phenanthroline, 610), respectively. All complexes have been spectroscopically characterized by UV–vis, luminescence, and electrogenerated chemiluminescence. The structures of 1?CH3COCH3, 3?CH3COCH3, 5?2CH3COCH3, 6, 8, 9, and 10 have been determined by single-crystal X-ray diffraction.  相似文献   

8.
Tris(2,2-bipyridine) ruthenium(II) complex, ionic probe, was incorporated into poly (N-isopropylacrylamide) (PNIPA), which is known to be a thermoresponsive polymer, by a copolymerization method. Electron transfer quenching of the complex probe by methyl viologen was investigated as a function of temperature. The electron transfer quenching rate constant (k q) in a globular state (higher temperature than the LCST (31°C)) is 4–5 times as large as that in a coil state (lower temperature) from the Stern-Volmer analysis. The result is quite different from the quenching of pyrene probe incorporated into PNIPA in the previous study. This is because hydrophilic ruthenium probe is located at the interface of polymer globular matrix even in a globular state, whereas pyrene probe was embedded into the hydrophobic matrix. The quenching behavior is discussed by a difference in molecular environment of the probes in phase transition of PNIPA in the aqueous solution.  相似文献   

9.
Preliminary stoichiometric and kinetic results bearing on the mechanism of the reduction of HCO3 to CO by tris(2,2′-bipyridine)cobalt(I) in aqueous media are reported. The results indicate that CO (not formate) is the dominant carbon product and that it is scavenged by Co(bpy)3+ to give insoluble [Co(bpy)(CO)2]2. At pH ∼ 9, bicarbonate reduction occurs in competition with H2O reduction. Both processes are inhibited by bpy and promoted by H+, suggesting the common intermediate Co(bpy)2(H2O)H2+. The bicarbonate reaction itself branches to give H2 and CO in ∼ 3:1 ratio.  相似文献   

10.
A reinvestigation of the photolysis of [Ru(bipy)3](NCSe)2 in ethanol under dinitrogen has failed to give the previously reported [Ru(N3)2bipy2] but, under appropriate conditions, may yield the complex [Ru(NCO)2bipy2].  相似文献   

11.
Energy transfer from benzophenone to Ru(bipy)2+3 has been studied in acetic acid by phosphorescence quenching of the donor and phosphorescence sensitization of the acceptor. A general method is described for the correction of trivial effects on the Stern—Volmer plots when both absorption and emission spectra of the donor overlap the absorption spectrum of the acceptor. The combination of intensity and lifetime data indicates that the quenching is not simply diffusional.  相似文献   

12.
Analytical and Bioanalytical Chemistry - Ethyl formate is extensively used as food flavor, fungicide, and larvicide. It naturally exists in coffee, fruits, honey, brandy, and rum as well as dust...  相似文献   

13.
The kinetics of the oxidation of tris(2,2′-bipyridyl)iron(II) and tris(1,10-phenanthroline)iron(II) complexes ([Fe(LL)3]2+, LL = bipy, phen) by nitropentacyanocobaltate(III) complex [Co(CN)5NO2]3? was investigated in acidic aqueous solutions at ionic strength of I = 0.1 mol dm?3 (HCl/NaCl). The reactions were carried out at fixed acid concentration ([H+] = 0.01 mol dm?3) and the temperature maintained at 35.0 ± 0.1 °C. Spectroscopic evidence is presented for the protonated oxidant. Protonation constants of 360.43 and 563.82 dm3 mol?1 were obtained for the monoprotonated and diprotonated Co(III) complexes respectively. Electron transfer rates were generally faster for [Fe(bipy)3]2+ than [Fe(phen)3]2+. The redox complexes formed ion-pairs with the oxidant with increasing concentration of the oxidant over that of the reductant. Ion-pair constants for these reaction were 160.31 and 131.9 dm3 mol?1 for [Fe(bipy)3]2+ and [Fe(phen)3]2+, respectively. The activation parameters measured for these systems have values as follows: ?H (kJ K?1 mol?1) = +113.4 ± 0.4 and +119 ± 0.3; ?S (J K?1) = +107.6 ± 1.3 and 125.0 ± 1.6; ?G (kJ K?1) = +81 ± 0.4 and +82.4 ± 0.4; and E a (kJ mol?1) = 115.9 ± 0.5 and 122.3 ± 0.6 for LL = bipy and phen, respectively. Effect of added anions (Cl?, $ {\text{SO}}_{4}^{2 - } $ and $ {\text{ClO}}_{4}^{ - } $ ) on the systems showed decrease in the electron transfer rate constant. An outer-sphere mechanism is proposed for the reaction.  相似文献   

14.
This paper presents synthesis, structural characterization and spintronic applications of copper (II) tetradecanoate derived magnetic complexes. The complexes were prepared by a chemical reaction between [Cu2(CH3(CH2)12COO)4](EtOH)2 and 2,2′-bipyridine-4,4′-bipyridine ligands respectively. The complexes were further reacted between the product of the first reaction and 4,4′-bipyridine-2,2′-bipyridine respectively. The structural characterization techniques included elemental analysis, Fourier transformed infrared spectroscopy (FTIR), Ultra-violet–Visible (UV–Vis) spectroscopy, polarized optical microscopy, magnetic moment and thermogravimetric analysis. The structural and characterization results suggested that the synthesized complexes were binuclear and mononuclear covalent complexes of copper(II) with structural formulas [Cu22-(OOCR)4](4,4′-bpy)2H2O] and [Cu(η1-(OOCR)2(2,2′-bpy) (4,4′-bpy)] respectively.  相似文献   

15.
Summary The synthesis, spectra and electrochemistry of [Ru(bipy)2-(picOH)]+ and -picO-[Ru(bipy)2]2 2+ (bipy = 2,2-bipyridine and picOH = 3-hydroxypicolinate ion) are described. The spectroscopic properties in the visible region are dominated by the intense Ru bipy chargetransfer transitions. In the binuclear complex, the two [Ru(bipy)2L]2+ moieties are nonequivalent, exhibiting E 1/2 = 0.69 and 1.20 V versus s.h.e. The partially oxidized species exhibits a weak intervalence transfer band at 1085 nm, and is consistent with a Robin-Day class II mixed valence complex.  相似文献   

16.
Electrochemical transformations of the tris(2,2′-bipyridine) complex of zinc(ii) perchlorate were studied by cyclic voltammetry detected by electron spin resonance (DESR CV), which made it possible to indentify the intermediates formed and to monitor the unpaired electron localization in them.  相似文献   

17.
Due to the highly sensitive electrochemiluminescence (ECL), tris(2,2′-bipyridyl) ruthenium(II) (Ru(bpy)32+) is often used in the field of bioarrays with the help of co-reactants. However, the generally used co-reactant, tripropylamine (TPA), is toxic, corrosive and volatile. Therefore, the search for safe, sensitive and economical co-reactants is critical. Herein, three aminocarboxylic acids, ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and 2-hydroxyethylethylene diaminetriacetic ac...  相似文献   

18.
Photo-oxidation of Ru(bpy)2(en)2+, where bpy = 2,2′-bipyridine, en = ethylenediamine, was studied in isotopic labeling experiments by using on-line electrospray mass spectrometry (ESMS). The complex was known to undergo photochemical dehydrogenation of a fourelectron oxidation, giving the α,α′-diimine complexes in a stepwise manner via a two-electron-oxidized intermediate that represents loss of two hydrogen atoms from the en ligand. On-line mass analysis after photoirradiation (λ > 420 nm) of Ru(bpy)2(ed)2+ (ed = ethylene-d4diamine) showed that the ligand of the intermediate with loss of two hydrogen atoms was not an enamine but had an imine structure. Also, a ligand-oxygenated complex that has mass 14 amu higher than the Ru(bpy)2(en)2+ complex was observed in the ES mass spectra. The ligand of this complex was proposed to have a nitroso structure as a primary product in 18O2 experiments. The oxygenated complex was not generated in a stepwise manner via the imine intermediate, but directly by loss of two amino hydrogen atoms and addition of an oxygen atom. The source of the oxygen atom would be from oxygen dissolved in solution rather than from water in solution. Another oxygenated complex Ru(bpy)2(NO 2 #x2212; )+ was produced by irradiation and the structure was identified in 18O2 experiments.  相似文献   

19.
A trinuclear bis(cyclohexanedioximate)(chloro)(nitrosyl)ruthenium(II) complex containing two (2,2-bipyridine)-copper(II) groups has been synthesized and its electronic and electrochemical properties investigated. According to ZINDO/S calculations, the electronic structure of the ruthenium(dioximate)(nitrosyl) moiety is strongly delocalized. The electrochemical behavior has been interpreted with the aid of spectroelectrochemical measurements. In the trinuclear complex, it has been shown that the copper(II) ions can promote the oxidation of the NO species generated electrochemically, and also mediate the redox reactions of the complex, under a dioxygen atmosphere.  相似文献   

20.
It is shown that photolysis of [PtMe4(bipy)] using incident radiation with λ 436 or 473 nm occurs with high quantum efficiency of 0.8–1.0 to give homolysis of a methylplatinum bond; this has allowed a study of the chemical reactions of the [PtMe3(bipy)] radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号