首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recently, there has been observed an interesting correspondence between supersymmetric quiver gauge theories with four supercharges and integrable lattice models of statistical mechanics such that the two-dimensional spin lattice is the quiver diagram, the partition function of the lattice model is the partition function of the gauge theory and the Yang–Baxter equation expresses the identity of partition functions for dual pairs. This correspondence is a powerful tool which enables us to generate new integrable models. The aim of the present paper is to give a short account on a progress in integrable lattice models which has been made due to the relationship with supersymmetric gauge theories and make clear notes on the special functions used by several authors.  相似文献   

2.
We construct a new infinite family of quiver gauge theories which blow down to the Xp,qXp,q quiver gauge theories found by Hanany, Kazakopoulos and Wecht. This family includes a quiver gauge theory for the third del Pezzo surface. We show, using Z-minimization, that these theories generically have irrational R-charges. The AdS/CFT correspondence implies that the dual geometries are irregular toric Sasaki–Einstein manifolds, although we do not know the explicit metrics.  相似文献   

3.
4.
We survey some features of equivariant instanton partition functions of topological gauge theories on four and six dimensional toric Kähler varieties, and their geometric and algebraic counterparts in the enumerative problem of counting holomorphic curves. We discuss the relations of instanton counting to representations of affine Lie algebras in the four-dimensional case, and to Donaldson–Thomas theory for ideal sheaves on Calabi–Yau threefolds. For resolutions of toric singularities, an algebraic structure induced by a quiver determines the instanton moduli space through the McKay correspondence and its generalizations. The correspondence elucidates the realization of gauge theory partition functions as quasi-modular forms, and reformulates the computation of noncommutative Donaldson–Thomas invariants in terms of the enumeration of generalized instantons. New results include a general presentation of the partition functions on ALE spaces as affine characters, a rigorous treatment of equivariant partition functions on Hirzebruch surfaces, and a putative connection between the special McKay correspondence and instanton counting on Hirzebruch–Jung spaces.  相似文献   

5.
We construct a statistical model of crystal melting to count BPS bound states of D0 and D2 branes on a single D6 brane wrapping an arbitrary toric Calabi-Yau threefold. The three-dimensional crystalline structure is determined by the quiver diagram and the brane tiling which characterize the low energy effective theory of D branes. The crystal is composed of atoms of different colors, each of which corresponds to a node of the quiver diagram, and the chemical bond is dictated by the arrows of the quiver diagram. BPS states are constructed by removing atoms from the crystal. This generalizes the earlier results on the BPS state counting to an arbitrary non-compact toric Calabi-Yau manifold. We point out that a proper understanding of the relation between the topological string theory and the crystal melting involves the wall crossing in the Donaldson-Thomas theory.  相似文献   

6.
We extend Halpern's field-strength formulation and dual potentials (for continuum gauge theories) to abelian and non-abelian lattice gauge theories. New results include: (i) plaquette formulation of all lattice gauge theories, (ii) the strong coupling expansion is seen as (a) a perturbation in dual links or (b) a gradual restoration of the lattice Bianchi identity. To leading order in the strong coupling expansion the lattice Bianchi identity is completely ignored. Geometrical interpretation of the lattice Bianchi identity is presented along with a discussion of the “abelianization” of the non-abelian identity and its connection with gauge-invariant variables. For abelian theories we also show that the dual potential is Fourier conjugate to the Bianchi identity and that the Coulomb gas representation of these theories is easily obtained in this formulation.  相似文献   

7.
We introduce duals for non-Abelian lattice gauge theories in dimension at least three by using a categorical approach to the notion of duality in lattice theories. We first discuss the general concepts for the case of a dual-triangular lattice (i.e., the dual lattice is triangular) and find that the commutative tetrahedron condition of category theory can directly be used to define a gauge-invariant action for the dual theory. We then consider the cubic lattice (where the dual is cubic again). The case of the gauge group SU(2) is discussed in detail. We will find that in this case gauge connections of the dual theory correspond to SU(2) spin networks, suggesting that the dual is a discrete version of a quantum field theory of quantum simplicial complexes (i.e. the dual theory lives already on a quantized level in its classical form). We conclude by showing that our notion of duality leads to a hierarchy of extended lattice gauge theories closely resembling the one of extended topological quantum field theories. The appearance of this hierarchy can be understood by the quantum von Neumann hierarchy introduced by one of the authors in previous work.  相似文献   

8.
We review the construction of gravitational solutions holographically dual to N=1 quiver gauge theories with dynamical flavor multiplets.We focus on the D3-D7 construction and consider the finite temperature,finite quark chemical potential case where there is a charged black hole in the dual solution.Discussed physical outputs of the model include its thermodynamics (with susceptibilities) and general hydrodynamic properties.  相似文献   

9.
We study four-dimensional quiver gauge models from F-theory compactified on fourfolds with hyper-K¨ahler structure.Using intersecting complex toric surfaces,we derive a class of N =1 quivers with charged fundamental matter placed on external nodes.The emphasis is on how local Calabi–Yau equations solve the corresponding physical constraints including the anomaly cancelation condition.Concretely,a linear chain of SU(N) groups with flavor symmetries has been constructed using polyvalent toric geometry.  相似文献   

10.
《Nuclear Physics B》1999,551(3):770-812
We propose explicit recipes to construct the Euclidean Green functions of gauge-invariant charged, monopole and dyon fields in four-dimensional gauge theories whose phase diagram contains phases with deconfined electric and/or magnetic charges. In theories with only either abelian electric or magnetic charges, our construction is an Euclidean version of Dirac's original proposal, the magnetic dual of his proposal, respectively. Rigorous mathematical control is achieved for a class of abelian lattice theories. In theories where electric and magnetic charges coexist, our construction of Green functions of electrically or magnetically charged fields involves taking an average over Mandelstam strings or the dual magnetic flux tubes, in accordance with Dirac's flux quantization condition. We apply our construction to 't Hooft-Polyakov monopoles and Julia-Zee dyons. Connections between our construction and the semiclassical approach are discussed.  相似文献   

11.
Recently an infinite family of explicit Sasaki–Einstein metrics Y p,q on S 2×S 3 has been discovered, where p and q are two coprime positive integers, with q<p. These give rise to a corresponding family of Calabi–Yau cones, which moreover are toric. Aided by several recent results in toric geometry, we show that these are Kähler quotients namely the vacua of gauged linear sigma models with charges (p,p,?p+q,?p?q), thereby generalising the conifold, which is p=1,q=0. We present the corresponding toric diagrams and show that these may be embedded in the toric diagram for the orbifold for all q<p with fixed p. We hence find that the Y p,q manifolds are AdS/CFT dual to an infinite class of superconformal field theories arising as IR fixed points of toric quiver gauge theories with gauge group SU(N)2 p . As a non–trivial example, we show that Y 2,1 is an explicit irregular Sasaki–Einstein metric on the horizon of the complex cone over the first del Pezzo surface. The dual quiver gauge theory has already been constructed for this case and hence we can predict the exact central charge of this theory at its IR fixed point using the AdS/CFT correspondence. The value we obtain is a quadratic irrational number and, remarkably, agrees with a recent purely field theoretic calculation using a-maximisation.  相似文献   

12.
We extend equivariant dimensional reduction techniques to the case of quantum spaces which are the product of a K?hler manifold M with the quantum two-sphere. We work out the reduction of bundles which are equivariant under the natural action of the quantum group SU q (2), and also of invariant gauge connections on these bundles. The reduction of Yang–Mills gauge theory on the product space leads to a q-deformation of the usual quiver gauge theories on M. We formulate generalized instanton equations on the quantum space and show that they correspond to q-deformations of the usual holomorphic quiver chain vortex equations on M. We study some topological stability conditions for the existence of solutions to these equations, and demonstrate that the corresponding vacuum moduli spaces are generally better behaved than their undeformed counterparts, but much more constrained by the q-deformation. We work out several explicit examples, including new examples of non-abelian vortices on Riemann surfaces, and q-deformations of instantons whose moduli spaces admit the standard hyper-K?hler quotient construction.  相似文献   

13.
We construct noncommutative Donaldson-Thomas invariants associated with abelian orbifold singularities by analyzing the instanton contributions to a six-dimensional topological gauge theory. The noncommutative deformation of this gauge theory localizes on noncommutative instantons which can be classified in terms of three-dimensional Young diagrams with a colouring of boxes according to the orbifold group. We construct a moduli space for these gauge field configurations which allows us to compute its virtual numbers via the counting of representations of a quiver with relations. The quiver encodes the instanton dynamics of the noncommutative gauge theory, and is associated to the geometry of the singularity via the generalized McKay correspondence. The index of BPS states which compute the noncommutative Donaldson-Thomas invariants is realized via topological quantum mechanics based on the quiver data. We illustrate these constructions with several explicit examples, involving also higher rank Coulomb branch invariants and geometries with compact divisors, and connect our approach with other ones in the literature.  相似文献   

14.
An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ?2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan–Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.  相似文献   

15.
A brief overview of the representation theory of quivers and the associated (deformed) preprojective algebras, as well as of the theories of moduli spaces of these algebras, quiver varieties and a reflection functor, is given. It is proven that a bijection between moduli spaces (in particular, between quiver varieties), which is induced by a reflection function, is the isomorphism of symplectic affine varieties. The Hamiltonian systems on quiver varieties are defined, and the application of a reflection functor to them is described. The review of [1], concerning the case of a cyclic quiver is given, and a role of the reflection functor in this case is clarified. The “spin” integrable generalizations of Calogero–Moser systems and their application to the KP hierarchy generalizations are described.  相似文献   

16.
The moduli space of k G-instantons on \( {\mathbb{R}^4} \) for a classical gauge group G is known to be given by the Higgs branch of a supersymmetric gauge theory that lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3, these (3 + 1) dimensional gauge theories have \( \mathcal{N} = 2 \) supersymmetry and can be represented by quiver diagrams. The F and D term equations coincide with the ADHM construction. The Hilbert series of the moduli spaces of one instanton for classical gauge groups is easy to compute and turns out to take a particularly simple form which is previously unknown. This allows for a G invariant character expansion and hence easily generalisable for exceptional gauge groups, where an ADHM construction is not known. The conjectures for exceptional groups are further checked using some new techniques like sewing relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.  相似文献   

17.
The phase diagram of SU(3) lattice gauge theories with Susskind fermions is investigated by Monte Carlo methods. For three flavors in the continuum a significant shift in the location of the peak in the specific heat is found, as compared to the pure gauge case. These results suggest that the crossover region moves to smaller β when fermion polarization effects are included.  相似文献   

18.
Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups ZnZn and S3S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.  相似文献   

19.
We present a progress report in lattice gauge theory computer simulations which includes the effects of light, dynamical fermions. Microcanonical and hybrid microcanonical-Langevin alogrithms are presented and discussed. A method for “accelerating” stochastic differential equations and defeating critical slowing down is reviewed. Physics applications such as the thermodynamics of quantum chromodynamics, hierarchal energy scales in unified gauge theories, and the phase diagram of theories with many fermion species are discussed. Prospects for future research are assessed.  相似文献   

20.
N = 1 supersymmetric gauge theories with global flavor symmetries contain a gauge invariant W-superalgebra which acts on its moduli space of gauge invariants. With adjoint matter, this superalgebra reduces to a graded Lie algebra. When the gauge group is SO(nc), with vector matter, it is a W-algebra, and the primary invariants form one of its representation. The same superalgebra exists in the dual theory, but its construction in terms of the dual fields suggests that duality may be understood in terms of a charge conjugation within the algebra. We extend the analysis to the gauge group E6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号