首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubator‐shaker method was used as a rapid technique to fabricate an efficient surface enhanced Raman scattering (SERS) substrate by combination of zero valent nanostructures and carbon fiber, which shows dramatic Raman enhancement of nitroaromatic molecule. The fabricated Ag nanoparticle on carbon‐fiber substrate (Ag–C) was used as an efficient SERS substrate to detect the adsorbed 2, 4‐dinitrotoluene molecules with a detection limit of 50 ppm. In advent, our developed SERS substrates could have great potential in detecting other nitro‐aromatic based‐explosive materials, such as 2, 4, 6‐trinitrotoluene molecules. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We report a novel method for the fabrication of films of silver nanoparticle aggregates that are strongly attached to Si substrates (Thiol‐immobilized silver nanoparticle aggregates or TISNA). The attachment is achieved by chemically modifying the surface of a Si(100) surface in order to provide SH groups covalently linked to the substrate and then aggregating silver nanoparticles on these thiol covered surfaces. The transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) characterization show a high coverage with single nanoparticles or small clusters and a partial coverage with fractal aggregates that provide potential hot spots for surface enhanced Raman scattering (SERS). We have confirmed the SERS activity of these films by adsorbing rhodamine 6G and recording the Raman spectra at several concentrations. By using the silver‐chloride stretching band as an internal standard, the adsorbate bands can be normalized in order to correct for the effects of focusing and aggregate size, which determine the number of SERS active sites in the focal area. This allows a quantitative use of SERS to be done. The adsorption–desorption of rhodamine 6G on TISNA films is reversible. These features make our TISNA films potential candidates for their use in chemical sensors based on the SERS effect. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
We report a novel post‐growth microwave treatment approach to selectively modify the surface morphologies of gold (Au) films coated on the polystyrene (PS) bead substrates for effectively improving the surface‐enhanced Raman scattering (SERS) effect on the analytes. The discrete dipole approximation (DDA) model was introduced to evaluate the enhancement effects by calculating the localized electromagnetic field distribution and extinction efficiency based on the sizes of the trenches and voids, and the surface roughness of the modified Au–PS bead substrates. The SERS performance of microwave‐modified Au–PS substrates on rhodamine 6G (Rh 6G) and saliva yields at least 10‐fold improvements in SERS intensities compared to the as‐grown substrates, which is also in agreement with theoretical predictions by DDA modeling. This work demonstrates both experimentally and theoretically the efficacy of the microwave heating treatment on modifying the Au–PS bead substrates for the realization of high SERS performance in biomedical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Vibrational bands of L ‐tryptophan which was adsorbed on Ag nanoparticles (∼10 nm in diameter) have been investigated in the spectral range of 200–1700 cm−1 using surface‐enhanced Raman scattering (SERS) spectroscopy. Compared with the normal Raman scattering (NRS) of L ‐tryptophan in either 0.5 M aqueous solution (NRS‐AS) or solid powder (NRS‐SP), the intensified signals by SERS have made the SERS investigation at a lower molecular concentration (5 × 10−4 M ) possible. Ab initio calculations at the B3LYP/6‐311G level have been carried out to predict the optimal structure and vibrational wavenumbers for the zwitterionic form of L ‐tryptophan. Facilitated with the theoretical prediction, the observed vibrational modes of L ‐tryptophan in the NRS‐AS, NRS‐SP, and SERS spectra have been analyzed. In the spectroscopic observations, there are no significant changes for the vibrational bands of the indole ring in either NRS‐AS, NRS‐SP, or SERS. In contrast, spectral intensities involving the vibrations of carboxylate and amino groups are weak in NRS‐AS and NRS‐SP, but strong in SERS. The intensity enhancement in the SERS spectrum can reach 103–104‐fold magnification. On the basis of spectroscopic analysis, the carboxylate and amino groups of L ‐tryptophan are determined to be the preferential terminal groups to attach onto the surfaces of Ag nanoparticles in the SERS measurement. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A simple synthesis method of silver nanoparticles and its application as an active surface‐enhanced Raman spectroscopy (SERS) colloid are presented in this work. The photoreduction of AgNO3 in presence of sodium citrate (NaCit) was carried out by irradiation with different light sources (UV, white, blue, cyan, green, and orange) at room temperature. The evaluation of silver nanoparticles obtained as a function of irradiation time (1–24 h) and light source was followed by UV‐visible absorption spectroscopy. This light‐modification process results in a colloid with distinctive optical properties that can be related to the size and shape of the particles. The Ag colloids, as prepared, were employed as active colloids in SERS. Pyridine and caffeine were used as test molecules. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Metal pellets of silver and copper for surface‐enhanced Raman scattering (SERS) spectroscopy were prepared by compression with different pressures. It was found that the SERS activity of the pellet could be controlled by pressure. Enhanced Raman scattering properties of the metal pellets in the presence of adsorbed 4‐mercaptobenzoic acid (4‐MBA) with excitation at 632.8 or 514 nm could be obtained by choosing proper pressure of pellatization. The SERS peak intensity of the band at ∼1584 cm−1 of 4‐MBA adsorbed on the metal pellets varies as a function of applied pressure, and which is about 1.2–32 times greater than when it is adsorbed on silver and copper particles. The calculated results of three‐dimensional finite‐difference time‐domain method (3D‐FDTD) are in good agreement with the experimental data. Moreover, no spurious peaks appear in the SERS spectra of the samples because no other chemicals are involved in the simple preparation process of the metal pellets, which will facilitate its use as an SERS‐active substrate for analytical purposes. In summary, SERS‐active metal pellets can be produced simply and cost effectively by the method reported here, and this method is expected to be utilized in the development of SERS‐based analytical devices. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Surface‐enhanced Raman spectroscopy (SERS) coupled with dendritic silver nanosubstrates was used in this study for rapid detection and characterization of restricted antibiotics. Dendritic silver nanosubstrates were prepared through a simple replacement reaction and stored in deionized water for months. SERS methods with near‐IR excitation at 785 nm using silver nanosubstrates were evaluated for detection of three restricted antibiotics (i.e. enrofloxacin, ciprofloxacin, and chloramphenicol) prepared in standard solutions. SERS was capable of identifying and characterizing three antibiotics quickly and accurately. Silver dendrites exhibit satisfactory and consistent performance with an analytical enhancement factor of ∼104. The limit of detection and limit of quantification for antibiotics could reach the level of 20 ppb. Silver dendrites can be kept in deionized water for up to 6 months with no signs of degradation in SERS performance. These results demonstrate a great potential of using SERS coupled with silver dendrites for rapid detection, classification, and quantification of chemical contaminants. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Here we report the synthesis of 2–5 nm size gold nanoparticle labels for surface‐enhanced Raman Spectroscopy (SERS) based immunoassay to detect protein molecules. The Au nanoparticles were conjugated with fluorescein isothiocyanate (FITC) and goat anti‐h‐IgG (immunoglobin) and the resultant particles were used for the detection of h‐IgG. Commercially available nitrocellulose strip and silver enhancement method were used for SERS‐based immunoassays. The FITC acts as a Raman probe, and vibrational fingerprint of this molecule was used for the detection of h‐IgG in concentration ranging from 1 to 100 ng/µl. Our Raman probe is robust and small in size and has high water solubility with minimum steric effect during antigen–antibody binding. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A strategy for improved surface‐enhanced Raman spectroscopy (SERS) measurements that extends the variety of analytes accessible to SERS analysis is developed. The strategy involves inducing aggregation by mixing positively charged nanoparticles which form SERS‐active clusters when mixed with negatively charged silver nanoparticles fabricated using the Lee–Meisel process. To make positively charged nanoparticles, silver nanoparticles using the traditional Lee–Meisel process are fabricated and coated with a thin layer of silica and the silica modified with silane chemistry. Analytes with a significant amount of negative charge exhibit strong Raman bands when the strategy using these fabricated, positively charged nanoparticles for inducing cluster formation is used, enabling their detection and analysis. We envision the use of positively charged nanoparticles in cluster formation for expanding the range of analytes that can be detected using SERS and hence the range of applications SERS can play a role in. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Although many surface‐enhanced Raman scattering (SERS)‐based methods for detecting specific proteins have been studied, simple and direct detection of total protein in liquid using a SERS‐based method remains difficult. In this study, a distinguishable effect on the SERS spectra from pre‐mixture of phosphomolybdic acid (PMA) with protein was found, indicating that PMA could be used as a SERS reporter for total protein detection in a liquid sample. Further experiments confirmed a good linear relationship between a premixed concentration of protein (casein, whey protein or bovine serum albumin) and the SERS intensity of PMA in our SERS system. Using casein as a reference, a PMA‐mediated SERS method was proposed that can quantitatively analyze protein at 2.5–25 µg/ml with a limit of detection of 1.5 µg/ml. Our PMA‐mediated SERS method is a simple and rapid method for quantitative analysis of total protein in milk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Although conventional Raman, surface‐enhanced Raman (SERS) and tip‐enhanced Raman spectroscopy (TERS) have been known for a long time, a direct, thorough comparison of these three methods has never been carried out. In this paper, spectra that were obtained by conventional Raman, SERS (on gold and silver substrates) and TERS (in ‘gap mode’ with silver tips and gold substrates) are compared to learn from their differences and similarities. Because the investigation of biological samples by TERS has recently become a hot topic, this work focuses on biologically relevant substances. Starting from the TER spectra of bovine serum albumin as an example for a protein, the dipeptides Phe–Phe and Tyr–Tyr and the tripeptide Tyr–Tyr–Tyr were investigated. The major findings were as follows. (1) We show that the widely used assumption that spectral bands do not shift when comparing SER, TER and conventional Raman spectra (except due to binding to the metal surface in SERS or TERS) is valid. However, band intensity ratios can differ significantly between these three methods. (2) Marker bands can be assigned, which should allow one to identify and localize proteins in complex biological environments in future investigations. From our results, general guidelines for the interpretation of TER spectra are proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A method for rapid detection of foreign protein contamination in complex food matrices is critically needed. Here we present a novel method that combines immunomagnetic separation (IMS) and surface‐enhanced Raman scattering (SERS) to detect ovalbumin (OVA), an egg white protein, added into whole milk. IMS was used to specifically capture the OVA out of the milk. Then SERS was applied to analyze the IMS eluate using silver dendrites as the substrate. Two SERS sample preparation methods, namely solution based and substrate based, were used to prepare the IMS eluate for SERS analysis. Results show both methods were able to detect 1 µg OVA in 1 ml milk (1 part per million). Based on the results of principal component analysis and partial least‐squares analysis, solution SERS was more capable of quantitative analysis, while substrate SERS was more sensitive for qualitative analysis. The total analytical time for IMS–SERS was less than 20 min, which satisfied the requirement of rapid detection in a milk processing facility. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A novel miniature device for rapid ultra‐sensitive surface‐enhanced Raman scattering (SERS) detection was developed in the present study. The device was made of a syringe, a piece of filter, and a Teflon tube. Therefore, it was with advantages of simplicity, miniaturization, and easy operability. The tube was filled in advance with the glycidyl methacrylate‐ethylene dimethacrylate powder porous material which has been proved to increase the sensitivity of normal SERS dramatically, then the mixture solution containing the analyte, silver colloid, and NaCl solution passed through the porous material by the action of the syringe. SERS signals were collected from the surface of the material. Rhodamine 6G (R6G), p‐aminothiophenol (PATP), and thiabendazole (TBZ) were employed as the probe molecules in the present work. R6G at microlitre‐scale can be detected at an extremely low concentration of 10–18 mol/l, and the relative standard deviation of spot to spot is 14.16% at the intensity of the band at 609 cm−1. The concentrations of PATP and TBZ that can be detected with the method are 10−11 mol/l and 1.3 × 10−6 mol/l, respectively. This method not only has achieved the ultra‐sensitive detection of dye and pesticide but also realized the simple, rapid, and small sample quantity requirement detection, and it is of great potential use for lots of analytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The surface‐enhanced Raman scattering substrate of Ag–Ag nanocap arrays are prepared by depositing Ag film onto two‐dimensional (2D) polystyrene colloidal nanosphere templates. When the original colloidal arrays are used as the substrate for Ag deposition, surface‐enhanced Raman scattering (SERS) enhancements show the strong size‐dependence behaviours. When O2‐plasma etched 2D polystyrene templates are used as the substrate for Ag deposition to form nanogaps, the gap sizes between adjacent Ag nanocaps from 5 to 20 nm generate even greater SERS enhancements. When SiO2 coverage is deposited to isolate the Ag nanocaps from the neighbours, the SERS signals are enhanced more. The significant SERS effects are due to the coupling between Ag nanocaps controlled by the distance, which enhances the local electric‐field intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Lactic acid is a simple and effective indicator for estimating physiological function. Rapid and sensitive detection of lactic acid is very useful in clinical diagnosis. However, the concentration of lactic acid in the physiological state is too low to be detected using traditional Raman spectroscopy. We applied silver colloidal nanoparticles‐mediated surface‐enhanced Raman spectroscopy (SERS) for rapid identification and quantification of lactic acid. The standard SERS spectra of lactic acid were defined and the 1395 cm−1 band intensity was used for quantification from 0.3 to 2 mM (R2 = 0.99). In clinical blood sample measurement, the ultrafiltration (cutoff value 5 kDa) can efficiently reduce background fluorescence to improve SERS performance. We established identical and optimal procedure by adjusting reaction time and volume ratio of serum and nanoparticles to obtain high SERS reproducibility. Finally, we showed that silver colloidal nanoparticles‐mediated SERS technique was successfully applied to detect lactic acid at physiological concentrations in the blood. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
There is an increasing interest in developing surface enhancement Raman spectroscopy methods for intracellular biomolecule and for in vitro protein detection that involve dye or protein–dye conjugates. In this work, we have demonstrated that protein adsorption on silver nanoparticle (AgNP) can significantly attenuate the surface‐enhanced Raman spectroscopy (SERS) signal of dye molecules in both protein/dye mixtures and protein/dye conjugates. SERS spectra of 12 protein/dye mixtures were acquired using 4 proteins [bovine serum albumin (BSA), lysozyme, trypsin, and concanavalin A] and three dyes [Rhodamine 6G, adenine, and fluorescein isothiocyanate (FITC)]. Besides the protein/dye mixtures, spectra were also obtained for the free dyes and four FITC‐conjugated proteins. While no SERS signal was observed in protein/FITC mixtures or conjugates, a significantly reduced SERS intensity (up to 3 orders of magnitude) was observed for both R6G and adenine in their respective protein mixtures. Quantitative estimation of the number of dye molecules absorbed onto AgNP implied that the degree of R6G SERS signal reduction in the R6G/BSA sample is 2 to 3 orders of magnitude higher than what could be accounted for by the difference in the amount of the absorbed dyes. This finding has significant implications for both intracellular SERS analyses and in vitro protein detection using SERS tagging strategies that rely on Raman dyes as reporter molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Complex concentration‐dependence of surface‐enhanced Raman scattering (SERS) and UV–Vis absorption of Ag‐nanoparticles (AgNPs) mixed with Gly has been observed. Surprisingly, with decreasing Gly concentration, a new band in UV–Vis absorption of AgNPs/Gly mixtures is found to red‐shift with increasing intensity, until a turning point at a critical concentration. Further diluting Gly, the new band blue‐shifts with decreasing intensity. Similarly, the SERS intensities of Gly bands at 615 and 905 cm–1 consistently increase with decreasing Gly concentrations, reaching maxima at the critical concentration. This agrees consistently with the variation in position and intensity of the new developing plasmon absorption band. Interestingly, transmission electron microscopy (TEM) revealed Gly‐induced modifications of AgNPs, including a reassembling and increasing aspect ratio with deceasing Gly concentration. The concentration‐dependent behavior of UV–Vis absorption, SERS, and TEM of AgNPs/Gly mixtures could be due to the complex nature of Gly‐AgNPs interaction depending on the molecular density, as supported by TEM images. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Surface‐enhanced Raman scattering (SERS) has become a valuable tool for the characterization of trace quantities of environmental toxins. Utilizing established wet chemical synthetic protocols, dogbone‐shaped colloidal gold nanoparticle substrates with sharp features were prepared with regions that exhibit significant SERS enhancement due to the lightning rod effect. These highly enhancing substrates were utilized for the quantitative determination of two dithiocarbamate fungicides by SERS in several complex matrices such as tap water, apple juice, and vegetable juice. Limits of detection and quantitation are reported and compared with Environmental Protection Agency mandated maximum allowable concentrations in tap water. In the case of tap water, limits of detection of 13.39 ± 3.89 nM for thiram and 1.78 ± 0.20 nM for ferbam was achieved. The sensitivity of the solution‐based SERS method decreased with increasing complexity of the matrix in which the limit of detection achieved in apple juice is 47.22 nM for thiram and 11.88 ± 1.38 nM for ferbam and that for vegetable juice is 87.01 ± 2.88 nM for thiram and 36.72 ± 2.90 nM for ferbam. It was found that using the solution‐based SERS method results in sensitivities that are greater than that required by Environmental Protection Agency mandated maximum allowable concentrations for complex matrices such as apple and vegetable juice. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The degree of charge‐transfer in Ag–4‐mercaptopyridine (Mpy) and Ag2S–4‐Mpy systems is investigated by use of surface‐enhanced Raman spectroscopy (SERS). Ag2S and Ag2Se nanoparticles are prepared on the basis of the former formation of Ag nanoparticles to make the SERS analytical objects comparable. We utilize the intensity of the non‐totally symmetric modes (either b1 or b2) as compared with the totally symmetric a1 modes to measure the degree of charge‐transfer. We find ~25% of charge‐transfer contribution for Ag–4‐Mpy, whereas 81 ~ 93% for Ag2S–4‐Mpy. It means that the charge‐transfer resonance contribution dominates the overall enhancement in SERS of Ag2S–4‐Mpy. Energy level diagram is applied to discuss the likely charge‐transfer transition between Ag, Ag2S, Ag2Se and 4‐Mpy. This article may point out the link among the three main resonance sources and could enable some insights into the electronic pathways available to the metal‐molecule and semiconductor‐molecule systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号