首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new and versatile, crown ether appended, chiral supergelator has been designed and synthesized based on the bis‐urea motif. The introduction of a stereogenic center improved its gelation ability significantly relative to its achiral analogue. This low‐molecular‐weight gelator forms supramolecular gels in a variety of organic solvents. It is sensitive to multiple chemical stimuli and the sol–gel phase transitions can be reversibly triggered by host–guest interactions. The gel can be used to trap enzymes and release them on demand by chemical stimuli. It stabilizes the microparticles in Pickering emulsions so that enzyme‐catalyzed organic reactions can take place in the polar phase inside the microparticles, the organic reactants diffusing through the biphasic interface from the surrounding organic phase. Because of the higher interface area between the organic and polar phases, enzyme activity is enhanced in comparison with simple biphasic systems.  相似文献   

2.
A chiral self-assembled M4L6 host assembly has been shown to be a suitable host for the supramolecular encapsulation of a series of guests in polar solvents, ranging from simple organic ammonium cations to more complex organometallic species. This molecular recognition process creates highly selective reactivity within the host cavity. In order to understand the factors driving the molecular recognition process, the standard thermodynamic parameters for encapsulation were determined for a series of protiated and fluorinated iridium guests in a variety of polar solvents using van't Hoff analysis. The encapsulation process for these guests exhibited enthalpy-entropy compensation effects. In solvents such as water and methanol, error analysis suggests a chemical origin for this behavior. In contrast, error analysis of this compensation behavior in polar aprotic solvents such as dimethyl sulfoxide reveals that this correlation is due to an artifact inherent in the intrinsic correlation between the enthalpy and entropy terms in the van't Hoff analysis. Guest encapsulation in polar protic solvents such as water appears to be driven by initial desolvation of the guest with concomitant rearrangement of the hydrogen bond networks in solution. This behavior shares common characteristics with other synthetic and natural host-guest and molecular recognition processes in aqueous solution, ranging from simple crown ether to complex enzyme-ligand interactions.  相似文献   

3.
Various crown ethers were prepared and applied as phase transfer catalysts for the an ionic copolymerization of bisphenol A and 4,4′‐dichlorodiphenyl sulfone monomers with alkali salts, e.g., NaNH2, NaOH and KOH, as initiators. The catalytic abilities of various crown ethers for the an ionic polymerization of bisphenol A / 4,4′‐dichlorodiphenyl sulfone were found to be in the order: 15‐crown‐5 ? monobenzo‐15‐crown‐5 > 18‐crown‐6 > Dicyclohexano‐18‐crown‐6 > Dibenzo‐18‐crown‐6 > 12‐crown‐4 with sodium amide (NaNH2) as initiator. Sodium amide was shown to be a better initiator than NaOH or KOH with monobenzo‐ 15‐crown‐5 as a catalyst. Effects of solvents and temperature on the crown ether catalytic polymerization were also investigated. Dimethyl sulfoxide (DMSO) exhibited much better for the polymerization than other organic solvents, e.g., toluene, p‐xylene, dimethyl formamide and dioxane. Higher polymerization was found at higher temperatures and about 100% yield of poly(bisphenol A / sulfone) was obtained at 125 °C in 3 hr. The molecular weight of poly(bisphenol A / sulfone) as a function of reaction time was determined with gel permeation chromatography. Concentration effects of crown ether on % yield and molecular weight of poly(bisphenol A / sulfone) were also investigated and discussed.  相似文献   

4.
Developing new strategies for controlling polymer conformations through precise molecular recognition can potentially generate a machine‐like motion that is dependent on molecular information—an important process for the preparation of new intelligent nanomaterials (e.g., polymer‐based nanomachines) in the field bordering between polymer chemistry and conventional supramolecular sciences. Herein, we propose a strategy to endow a helical polymer chain with dynamic spring‐like (contraction/expansion) motion through the one‐dimensional self‐assembly (aggregation/disaggregation) of peripheral amphiphilic molecules. In this developing system, we employed a semi‐artificial helical polysaccharide presenting peripheral amphiphilic chlorophyll units as a power device that undergoes contractive motion in aqueous media, driven by strong π–π interactions of its chlorophyll units or by cooperative molecular recognition of bipyridyl‐type ligands through pairs of chlorophyll units, thereby converting molecular information into the regulated motion of a spring. In addition, this system also undergoes expansive motion through coordination of pyridine. We anticipate that this strategy will be applicable (when combined with the established wrapping chemistry of the helical polysaccharide) to the development of, for example, drug carriers (e.g., nano‐syringes), actuators (stimuli‐responsive films), and directional transporters (nano‐railways), thereby extending the frontiers of supramolecular science.  相似文献   

5.
Two bola‐amphiphilic small molecules, based on the diphenylanthracene skeleton structure, namely, BASM‐1 and its functionalized small molecule BASM‐2 , were designed and synthesized. The self‐assembly behavior and mechanism of these two molecules in aqueous solution were studied. The supramolecular two‐dimensional (2D) layer and the covalent 2D polymers were, respectively, prepared by these two molecules. What is more, the transverse size of the covalent 2D polymer laminates increased with the extension of the polymerization time. Atomic force microscopy results showed that both free‐standing single‐layer 2D polymers and few layer laminates with two to three molecular layers were obtained. So our work provides a simple and efficient method for directly preparing independent both supramolecular 2D polymers and covalent 2D polymers in liquid phase which is of great significance. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1748–1755  相似文献   

6.
A novel supramolecular alternating polymer is constructed based on double molecular recognition events of benzo‐21‐crown‐7 with a secondary ammonium salt and of pillar[5]arene with a neutral guest. The resulting polymer is utilized to prepare hierarchical materials with different dimensionalities for the first time. These materials included zero‐dimensional spherical aggregates, one‐dimensional nanofibers, two‐dimensional microstructured films, and three‐dimensional ordered glue. This development will be helpful for designing and preparing supramolecular hierarchical materials with different dimensionalities.  相似文献   

7.
The self‐assembly into supramolecular polymers is a process driven by reversible non‐covalent interactions between monomers, and gives access to materials applications incorporating mechanical, biological, optical or electronic functionalities. Compared to the achievements in precision polymer synthesis via living and controlled covalent polymerization processes, supramolecular chemists have only just learned how to developed strategies that allow similar control over polymer length, (co)monomer sequence and morphology (random, alternating or blocked ordering). This highlight article discusses the unique opportunities that arise when coassembling multicomponent supramolecular polymers, and focusses on four strategies in order to control the polymer architecture, size, stability and its stimuli‐responsive properties: (1) end‐capping of supramolecular polymers, (2) biomimetic templated polymerization, (3) controlled selectivity and reactivity in supramolecular copolymerization, and (4) living supramolecular polymerization. In contrast to the traditional focus on equilibrium systems, our emphasis is also on the manipulation of self‐assembly kinetics of synthetic supramolecular systems. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 34–78  相似文献   

8.
Diaryliodonium salts spontaneously form crystalline 1:1 supramolecular complexes at room temperature in good to excellent yields with 18‐crown‐6 ether and its cyclohexano‐ and benzo‐substituted analogs. The complexes were characterized using IR, UV, MS, 1H, and 13C‐NMR spectroscopy and by single crystal X‐ray crystallography. The analytical data obtained were consistent with a structure in which the positively charged iodine atom of diaryliodonium cation is positioned above and over the center of the crown ether ring with the positively charged iodine atom coordinated to the crown ether oxygen atoms. The diaryliodonium salt‐crown ether complexes are photosensitive and were used to carry out the photoinitiated cationic polymerizations of a number of mono‐ and difunctional monomers. During irradiation with UV light, the supramolecular complexes undergo photolysis with the generation of a Brønsted acid and with the concomitant release of the crown ether. When used as photoinitiators, the crown ether that is released markedly influences the kinetics of the subsequent cationic polymerization of the monomer. Further studies demonstrated that the photolysis of diaryliodonium salt‐crown ether supramolecular complexes can be photosensitized using typical‐electron transfer photosensitizers. Free radical‐promoted photosensitization using typical unimolecular free radical photoinitiators such as 2,2‐dimethoxy‐2‐phenylacetophenone also takes place readily. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

9.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
Poly(o‐aminophenethyl alcohol) and its copolymers containing the aniline unit were synthesized in aqueous hydrochloric acid medium by chemical oxidative polymerization. The chemical composition of these novel polymers was determined spectroscopically, and their viscosities were measured. These polymers exhibit good solubility in organic solvents that is attributed mainly to the polar hydroxyethyl side groups. Their structures (chain conformation and morphological structure) and properties (conductivity, electrochemical characteristics, glass transition, and degradation behavior) were characterized and then interpreted on the basis of the chemical composition along with the electronic and steric hindrance effects associated with the hydroxyethyl side group. Overall, the side group has a significant effect on the polymerization and influences the structure, chain conformation, and properties of the resultant polymer. The poly(aniline‐coo‐aminophenethyl alcohol)s containing 20–40 mol % o‐aminophenethyl alcohol units are potential conducting materials for microelectronic and electromagnetic shielding applications because they are easier to process than polyaniline but retain its beneficial properties. These polymers can also be used as a functional conducting polymer intermediate owing to the reactivity of the side group. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 983–994, 2002  相似文献   

11.
The anionic ring‐opening polymerization of oxetanes containing hydroxyl groups was carried out with potassium tert‐butoxide as an initiator in the presence of 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding multifunctional hyperbranched polymers: poly(3‐ethyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 2200–4100 in 83–95% yields, and poly(3‐methyl‐3‐hydroxymethyloxetane)s, with number‐average molecular weights of 4600–5200 in 70–95% yields. The synthesized poly(3‐ethyl‐3‐hydroxymethyloxetane)s and poly(3‐methyl‐3‐hydroxymethyloxetane)s were hyperbranched polyethers containing an oxetane moiety and many hydroxy groups at the ends. The postpolymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane)s was performed in the presence of potassium tert‐butoxide and 18‐crown‐6‐ether in N‐methylpyrrolidinone at 180 °C; it yielded corresponding polymers with higher molecular weights in good yields. The cationic polymerization of poly(3‐ethyl‐3‐hydroxymethyloxetane) derivatives was carried out with boron trifluoride etherate as an initiator and was followed by alkaline hydrolysis; this yielded a new branched polymer, a poly(hyperbranched polyether), with many pendant hydroxy groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3739–3750, 2004  相似文献   

12.
The self‐assembly of a low‐molecular‐weight organogelator into various hierarchical structures has been achieved for a pyridylpyrazole linked L ‐glutamide amphiphile in different solvents. Upon gel formation, supramolecular chirality was observed, which exhibited an obvious dependence on the polarity of the solvent. Positive supramolecular chirality was obtained in nonpolar solvents, whereas it was inverted into negative supramolecular chirality in polar solvents. Moreover, the gelator molecules self‐assembled into a diverse array of nanostructures over a wide scale range, from nanofibers to nanotubes and microtubes, depending on the solvent polarity. Such morphological changes could even occur for the xerogels in the solvent vapors. We found that the interactions between the pyridylpyrazole headgroups and the solvents could subtly change the stacking of the molecules and, hence, their self‐assembled nanostructures. This work exemplifies that organic solvents can significantly involve the gelation, as well as tune the structure and properties, of a gel.  相似文献   

13.
A series of macrocyclic aryl ketone oligomers were prepared by the reaction of phthaloyl dichloride or isophthaloyl dichloride with various bridge‐linking electron‐rich aromatic hydrocarbons 3a–d under pseudo‐high dilution conditions in the presence of Lewis base via Friedel–Crafts acylation reaction. Detailed structural characterization of these oligomers confirmed the cyclic nature by a combination of MALDI‐TOF‐MS, GPC, and 1H NMR analyses. These cyclic ketone oligomers have high solubility in organic solvents and the cyclic oligomers derived from phthaloyl dichloride are amorphous. The cyclic ketone oligomers readily undergo anionic ring‐opening polymerization in the melt by using potassium 4,4′‐biphenoxide as the initiator, producing linear, high molecular weight poly(ether ketone)s. Moreover, the isothermal chemorheology of the ring‐opening polymerization of cyclic oligomers 4a and 4b was also investigated. The results show that the shear viscosity of the molten reactive mixture is lower than 10 Pa · S at a constant shear rate of 0.05 rad/sec and increases slowly in the initial stage of ring‐opening polymerization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Development of self‐healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host–guest recognition between a β‐cyclodextrin (β‐CD) host polymer (poly‐β‐CD) and an α‐bromonaphthalene (α‐BrNp) polymer (poly‐BrNp) without any additional gelator, which can self‐heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room‐temperature phosphorescence (RTP) signals based on the fact that the inclusion of β‐CD macrocycle with α‐BrNp moiety is able to induce RTP emission (CD‐RTP). The RTP signal can be adjusted reversibly by competitive complexation of β‐CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly‐Azo).  相似文献   

15.
Two functional main‐chain linear polyrotaxanes, one a covalent polymeric chain that threads through many macrocycles ( P1 ) and the other a poly[n]rotaxane chain that is composed of many repeating rotaxane units ( P2 ), were synthesized by employing strong crown‐ether/ammonium‐based ( DB24C8 / DBA ) host–guest interactions and click chemistry. Energy transfer between the wheel and axle units in both polyrotaxanes was used to provide insight into the conformational information of their resulting polyrotaxanes. Steady‐state and time‐resolved spectroscopy were performed to understand the conformation differences between polymers P1 and P2 in solution. Additional investigations by using dynamic/static light scattering and atomic force microscopy illustrated that polymer P1 was unbending and had a rigid rod‐like structure, whilst polymer P2 was curved and flexible. This flexible topology facilitated the self‐assembly of polymer P2 into relatively large ball‐shaped particles. In addition, the energy transfer between the wheel and axle units was controlled by the addition of specific anions or base. The anion‐induced energy enhancement was attributed to a change in electrostatic interactions between the polymer chains. The base‐driven molecular shuttle broke the DB24C8 / DBA host–guest interactions. These results confirm that both intra‐ and intermolecular electrostatic interactions are crucial for modulating conformational topology, which determines the assembly of polyrotaxanes in solution.  相似文献   

16.
A series of poly(2‐methoxyethyl vinyl ether)s with narrow molecular weight distributions and with perfectly defined end groups of varying hydrophobicities was successfully synthesized by base‐assisting living cationic polymerization. The end group was shown to greatly affect the temperature‐induced phase separation behavior of aqueous solutions (lower critical solution temperature‐type phase separation) or organic solutions (upper critical solution temperature‐type phase separation) of the polymers. The cloud points were also influenced largely by the molecular weight and concentration of the polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
The design and synthesis of a new hydrophobic monomer, that is, 4‐(tert‐butyl)phenyl 6‐acrylamidohexanoate (TBP‐AA‐HO) and its ability to form supramolecular host/guest complexes with β‐cyclodextrin (CD) is described. The aqueous CD‐mediated reversible addition fragmentation chain transfer (RAFT) polymerization affords molecular masses up to 8600 g mol?1 with polydispersities between 1.2 and 1.4. The surprisingly low molecular weights for higher monomer/chain transfer agent (CTA) ratios are investigated by comparing results obtained from free radical and RAFT radical polymerization in aqueous and organic media. The results indicate a steric hindrance caused by attached CD molecules on the growing polymer chain leading to stagnation of the polymerization process due to a restricted accessibility of the reactive chain end. This hypothesis is supported by matrix‐assisted laser desorption/ionization time of flight mass spectrometry. Furthermore, the CD‐mediated synthesis of amphiphilic diblock copolymers in variable aqueous media is described. Hydrophilic poly(N,N‐dimethylacrylamide) macro‐CTAs with different molecular weights are used to polymerize TBP‐AA‐HO at 50 °C. The diblock copolymers are analyzed by 1H‐nuclear magnetic resonance spectroscopy and size exclusion chromatography. The results confirm the polymer structure and reveal similar limitations of chain growth as observed for the CD‐mediated homopolymerization with a limit of 7000 g mol?1 for efficient chain extension. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2504–2517  相似文献   

18.
A series of copoly(ether ketone)s containing double bonds along the polymer chains were synthesized from the condensation polymerization of hydroquinone with 4,4′‐difluorobenzophenone and 4,5‐bis(4‐fluorobenzoyl)‐1‐methylcyclohexene in sulfolane containing anhydrous potassium carbonate. The presence of methylcyclohexene in the polymer chains resulted in an improvement in the solubility of poly(ether ketone)s in organic solvents such as chloroform, chlorobenzene, and sulfolane. As a result, the conditions for synthesizing these polymers were much milder than those for poly(ether ether ketone). The new copoly(ether ketone)s also showed good tensile properties and reasonable thermal stability. New polyethers containing pyrazine unites were obtained from the cyclization reaction of these copoly(ether ketone)s with hydrazine. The hydrazine cycloderivatives led to an increase in the glass‐transition temperatures and a decrease in solubility in organic solvents. © 2002 Government of Canada. Exclusive world‐wide publication rights in the article have been transferred to Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3449–3454, 2002  相似文献   

19.
We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol?1 are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non‐polar solvents or in the bulk. Hierarchical self‐assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well‐ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations.  相似文献   

20.
Hydrophilic polymer brushes grown via surface‐initiated polymerization from silicon oxide surfaces can detach or degraft in aqueous media. Degrafting of these chain end‐tethered polymers is believed to involve hydrolysis of bonds at the polymer–substrate interface. Degrafting so far has not been reported for hydrophobic polymer brushes in non‐aqueous media. This study has investigated the degrafting and swelling properties of poly(tert‐butyl methacrylate) (PtBMA) brushes in different water‐miscible, organic solvents, viz. DMF, acetone and THF. In the presence of a sufficient quantity of water in the organic solvent, degrafting was also observed for PtBMA brushes. More importantly, however, the rate of degrafting depended on the nature of the organic solvent and the apparent initial rate constant of the degrafting reaction was found to correlate with the swelling ratio of the polymer brush in the different solvents. This correlation is first, direct evidence in support of the hypothesis that degrafting is facilitated by a tension that acts on the bond(s) that tether the polymer chains to the surface and which is amplified upon swelling of the polymer brush.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号