首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of surface‐enhanced Raman spectroscopy is demonstrated to probe the adsorption behavior of individual molecules on a Ag electrode. High‐quality SERS spectra of (R)‐di‐2‐naphthylprolinol (DNP) were obtained from ultradilute solutions (10−12 M ) on the Ag‐nanoparticle‐modified Ag electrode, which is attributed to the high electromagnetic (EM) effect of the SERS‐active system as well as to the strong adsorption and interaction of DNP molecules with Ag. The stable SERS spectra present remarkable potential dependence, which gives evidence for the behavior of individual DNP molecules on the Ag surface. Based on statistical analysis for the probability of DNP molecules located in ‘hot spots’, we propose an SERS mechanism for individual molecules in the electrode system, in combination with the hot‐spot model and orientation of the probe molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
咖啡酸(CA)是一种具有很高的医学价值的药物成分,在抗菌抗病毒方面应用广泛,尤其是咖啡酸及其衍生物在抗肿瘤方面有着巨大作用,现在对咖啡酸的相关研究越来越多,但大部分都是关于咖啡酸医学性质的研究,所以对咖啡酸分子的微观结构研究是非常有必要的。目前关于CA在Ag表面上的表面增强拉曼散射(SERS)光谱的理论与实验结合的研究尚未见报道,而对其振动光谱及表面增强机理的研究可以为咖啡酸的各种药学机理的研究提供一种科学的物理解释,所以有必要将密度泛函理论(DFT)方法与表面增强拉曼散射技术相结合,对咖啡酸在Ag纳米颗粒上的吸附性质及表面增强机理进行全面的研究,这对推进它们在医药学等领域的相关研究有着重要的参考价值。采用SERS与DFT技术对CA分子在Ag纳米颗粒表面上的表面增强拉曼光谱进行了研究。在实验方面,利用热还原反应原理,使用柠檬酸三钠和硝酸银在加热搅拌情况下制备Ag纳米颗粒,并使用激光共聚焦显微拉曼光谱仪测量了CA分子的常规拉曼散射(NRS)光谱及其表面增强拉曼散射(SERS)光谱。在理论计算方面,采用DFT的B3LYP方法,以6-31+G**和LANL2DZ分别作为C,H,O和Ag的计算基组来优化咖啡酸的分子构型,羟基与Ag4的吸附构型,羧基与Ag4的吸附构型,羟基与羧基共同与Ag4吸附的构型,并以此为基础分析计算了CA分子的NRS光谱以及三种可能吸附模型的SERS光谱,并结合实验结果进行比较。同时对CA分子的振动模式进行了详细指认。根据实验数据和理论结果分析,在452 cm-1处的谱峰归属为环面外弯曲振动和O-H面外弯曲振动的耦合,这说明CA分子上的酚羟基是与Ag纳米颗粒表面作用的,不过相互作用较弱,推测CA分子平面可能与Ag基底表面不垂直;出现在1 338 cm-1处的谱峰归属于COO-伸缩振动,则可以说明CA分子上的羧基可能与Ag纳米颗粒垂直吸附。结果表明,CA分子是以羧基和酚羟基为吸附位吸附在Ag纳米颗粒表面上的。同时对CA分子的振动模式进行了详细指认。该工作对推进咖啡酸在生物医药等领域进一步的应用将起到重要作用。  相似文献   

3.
Silver particles with different degrees of aggregation were synthesized through a sodium dodecyl sulfate‐assisted one‐pot reaction in an aqueous medium. The products were characterized by transmission electron microscopy, scanning electron microscopy and UV‐visible spectroscopy. The results showed that the degree of aggregation of the Ag nanoparticles could be tuned by changing the reaction parameters, such as the reaction temperature and time. A possible formation process of the Ag aggregate is proposed on the basis of a series of experimental results. Moreover, the surface‐enhanced Raman scattering (SERS) effect of the Ag aggregates was evaluated by using rhodamine 6G as a Raman probe molecule. It was demonstrated that the SERS enhancement ability is related to the degree of aggregation of Ag particles, and a high SERS signal can be observed by selecting Ag nanoparticles with the proper degree of aggregation as substrates. Moreover, the aggregates showed good reproducibility and stability to SERS from organic molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In order to get insight into the chemical heterogeneities of solid tumors, here we report the first surface‐enhanced Raman scattering (SERS) experiment from normal and altered epithelial layer in human colon carcinoma tissues. The Ag colloidal nanoparticles that can be incorporated into the interstitial space in solid tumors or those penetrating into cytoplasm or nucleus of many cells allowed high quality SERS signal. Different tissue structures of tumor and normal colon have characteristic features in SERS spectra. Prominent SERS features of malignant tissue spectra are related to the strong enhancement of the bands preponderantly attributable to DNA or RNA bases. The preliminary studies demonstrate that it is possible to probe Ag colloidal nanoparticles adsorption onto the tissue resulting in a strong molecular signaling with high specificity and rapid acquisition time using visible laser line excitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A cost‐effective way of fabricating lipid‐coated surface‐enhanced Raman spectroscopy (SERS) substrate having reproducible high SERS activity was proposed. Ag nanoparticle embedded in 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) and 1,2‐dioleoyl‐3‐trimethylammonium‐propane (DOTAP) membranes was produced by direct deposition of a 5‐nm‐thick layer of Ag onto the solid‐supported phospholipid membrane, and subsequent dissolution of the Ag nanoparticle‐embedded membrane in iso‐octane allowed easy one‐pot fabrication of DOPC‐ or DOTAP‐coated Ag nanoparticles. In particular, DOTAP produced nearly monodisperse lipid‐encapsulated Ag nanoparticles (9 nm in diameter) exhibiting reproducible high SERS activity (detecting up to 10 nM of rhodamine 6G and 0.5 μM of glutathione). In addition, the process was modified to incorporate variety of Raman active molecules (rhodamine 6G, malachite green, 4‐aminothiopheonol, 4‐mercaptopyridine) into the particle‐encapsulating lipid bilayer. The DOTAP/Raman dye‐coated Ag nanoparticles also generated high SERS activity to enable potential application of the DOTAP/Raman dye‐coated Ag nanoparticles feasible in different areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
利用Nd:YAG(1064nm)和准分子(KrF,248nm)两种不同波长的脉冲激光器对处于去离子水中的Ag片进行激光烧蚀,得到了不同尺寸的Ag纳米颗粒,同时,这些Ag纳米颗粒与去离子水形成了Ag纳米胶体体系。由于制备这种Ag纳米胶体的是一种物理过程,所以具有较高的纯净性。通过透射电子显微镜(TEM)对两种不同激光器制备的Ag纳米胶体的观测发现,虽然这两种Ag纳米颗粒大小尺寸不同,但都具有较好的分散性和均匀性。同时,在Raman光谱学应用方面,由于这两种Ag纳米胶体中无任何氧化剂或还原剂等外来杂质的干扰,具有非常好的纯净性,可以作为非常好的表面增强拉曼散射的增强基底,并对这两种Ag纳米颗粒与探针对羟基苯甲酸(PHBA)的吸附行为做了简要的分析。  相似文献   

8.
9.
We present experimental results of the time‐dependent Raman signal response of fluoranthene adsorbed on a naturally grown Ag nanoparticle ensemble, which serves as surface enhanced Raman scattering (SERS) substrate. In addition, SERS characteristics such as the concentration‐dependent calibration curves and the limit of detection (LOD) for fluoranthene in distilled water will be shown. The SERS substrate was prepared by Volmer–Weber growth under ultrahigh vacuum condition and exhibits a plasmon resonance wavelength at 491 nm. For the measurement of SERS signal response and SERS/shifted excitation Raman difference spectroscopy spectra of fluoranthene in water, experimental Raman setup containing a microsystem light source with two emission wavelengths (487.61 nm and 487.91 nm) was used. We experimentally demonstrate that the maximum SERS intensity is achieved 9 min after changing the analyte concentration from 0 nmol/l to 600 nmol/l. This response time is explained by a time‐dependent adsorption of the probe molecules onto the nanoparticles. The LOD for fluoranthene in water was evaluated applying shifted excitation Raman difference spectroscopy (SERDS) at different molecule concentrations. For SERDS, two emission wavelengths of a prototype microsystem light source have been used for Raman excitation. The experimental results reveal that the LOD for the probe molecules is very low. Experimentally, we have detected a fluoranthene concentration of only 4 nmol/l, which is very close to our estimated LOD of 2 nmol/l. Thus, the presented Raman setup, with a SERS substrate, whose plasmon resonance coincides with the excitation wavelength for SERS measurements, is well suited for in‐situ trace detection of pollutant chemicals in water. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Ag nanoparticles synthesized on porous silicon samples were studied and applied as substrates for surface‐enhanced Raman scattering (SERS). The metallic nanostructures prepared by immersion plating were characterized by UV–Vis reflectance spectroscopy and scanning electron microscopy. SERS activity of the substrates was tested using Cyanine dye 1,3,3,1′,3′,3′‐esamethyl‐5,5′‐dimethoxyindodicarbocyanine iodide (Cy5‐OCH3) as a probe molecule. The Raman spectra obtained for different excitation wavelengths indicate amplifications ascribed to plasmonic resonances with an enhancement factor up to 107. CGIYRLRS peptides were chemisorbed on the Ag nanoparticles with the plasmonic resonance tuned at the excitation energy. Such oligopeptides were used as baits for a specific polyclonal antibody. The overall Raman enhancement allowed to evidence a good selectivity to the target analyte as required by most of the SERS applications on biological assays. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
We study the adsorption behaviors of rhodamine dyes on gold nanoparticles (Au NPs) depending on their surface charges. Rhodamine 6G (Rh6G) dye is tested comparatively for positively and negatively charged Au NPs prepared by the reduction of chitosan and citric acid, respectively. The adsorption of Rh6G is found to be weaker on the positively charged Au NPs, whereas more substantial aggregation is found on negatively charged Au NPs. An increase in the concentration of Au NPs enhances the surface‐enhanced Raman scattering (SERS) intensities only for the Au(−) NPs, whereas the Au(+) NPs do not exhibit any strong SERS signals. Our findings suggest that SERS and reciprocal fluorescence measurements of Rh6G can be used to estimate the surface charges and atomic percentages of Au NPs less than ∼5 ppm. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, Ag nanoparticles (NPs) were deposited on patterned TiO2 nanotube films through pulse‐current (PC) electrodeposition, and as a result patterned Ag NPs films were achieved. Scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and X‐ray diffraction (XRD) were used, respectively, to study the morphology, uniformity, and phase structure of the patterned Ag NP films. The size and density of the as‐deposited Ag NPs could be controlled by changing the deposition charge density, and it was found that the patterned Ag NP films produced under a charge density of 2.0 C cm−2 gave intense UV–vis and Raman peaks. Two‐dimensional surface‐enhanced Raman scattering (SERS) mapping of rhodamine 6G (R6G) on the patterned Ag NP films demonstrated a high‐throughput, localized molecular adsorption and micropatterned SERS effect. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
表面增强拉曼散射(SERS)是一种广泛应用于化学反应检测、医学诊断和食品分析等领域的高灵敏度光谱技术.基底结构的构建对提高探针分子的SERS信号有非常重要的影响.本文利用聚甲基丙烯酸甲酯(PMMA)包裹银纳米颗粒制备了一种三维金字塔立体复合SERS基底,实现了对罗丹明6G (R6G)分子的高灵敏度检测.通过调节银纳米颗粒在PMMA丙酮溶液中的分散密度,实现了光在金字塔谷内的有效振荡,既保证了三维结构高密度的"热点"效应,又避免了由于金属-分子相互作用引起的吸附探针分子变形导致的信号失真等问题.同时,有效防止了银纳米颗粒的氧化,为探针分子提供更大的电磁增强作用范围,使增强的拉曼信号产生稳定的输出.此研究结果不仅提供了一种高性能、可重复使用的SERS基底的有效策略,也会对未来设计改进三维结构的SERS基底有指导意义.  相似文献   

14.
The highly fluorescent natural dye berberine can be easily identified in microscopic textile samples by surface‐enhanced Raman spectroscopy employing citrate‐reduced Ag colloid. The ordinary Raman (OR) and SERS spectra of berberine are presented and discussed in the light of a DFT calculation. Using FT‐Raman and FT‐SERS we could reliably compare relative intensity shifts and investigate the adsorption geometry of berberine on Ag nanoparticles. The significant enhancement in the FT‐SERS spectrum of the out‐of‐plane ring system bending deformation mode at 729 cm−1 relative to a group of in‐plane vibrations at around 1500 cm−1 was interpreted as evidence of a ‘flat‐on’ adsorption geometry. SERS was successfully used to identify berberine in silk fiber samples coated with colloidal Ag following a pretreatment with HCl vapor. The SERS method allowed us to detect berberine in a microscopic sample of a single silk fiber from a severely degraded and soiled 17th Century Chinese textile fragment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
自组装银纳米粒子及其SERS增强效应   总被引:2,自引:2,他引:0  
采用柠檬酸三钠还原硝酸银方法制备出银纳米粒子, 并通过在玻璃表面修饰3-氨基丙基-三乙氧基硅烷( APTES)对银纳米粒子进行自组装。利用紫外-可见(UV-Vis)吸收光谱和扫描电子显微镜(SEM)测试手段对样品进行分析和表征。由测试结果可知银纳米粒子的尺寸比较均匀, 组装致密度较高, 基本以亚单层的形式分布于基底表面。进一步研究了以结晶紫(CV)为探针分子的自组装基底的表面增强拉曼光谱(SERS), 计算发现该基底的拉曼增强因子数量级达106。结果表明: 银纳米粒子自组装基底具有良好的SERS增强效应, 为痕量CV的检测提供了有效的方法。  相似文献   

16.
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs‐R6G) were assembled on glass and used as the seeds to in situ grow silver‐coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs‐R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV‐visible spectroscopy. More importantly, the obtained silver‐coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs‐R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs‐R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min. In addition, the reproducibility of SERS signal on the fabricated nanostructures is very high with the intensity error lower than 15%, which has great promise as a probe for application in bioanalysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Raman spectroscopy is widely used for study of lipids and membrane models. A severe limitation of this technique lies in the low Raman cross section requiring high sample concentrations. We report sensitive detection of synthetic 1,2‐dimyristoyl‐3‐trimethylammonium‐propane (DMTAP) lipid employing two Raman techniques with improved sensitivity: drop coating deposition Raman (DCDR) and surface‐enhanced Raman scattering (SERS) spectroscopies. DCDR provided well‐reproducible DMTAP spectra without considerable loss of its solution properties if measured from the ‘coffee ring’ pattern of a drop dried on a SpectRIMTM plate. DMTAP was detected at ~10 μM initial solution concentration, which is about three orders of magnitude lower than that for conventional Raman spectroscopy. Moreover, SERS spectra from dried ring of Ag hydrosol/DMTAP system were obtained down to ~0.3 μM DMTAP concentration, which means that sensitivity of SERS is about five orders of magnitude higher than that of conventional Raman spectroscopy. In contrast to the DCDR technique, good SERS spectra of DMTAP were obtained only from some spots of the ring containing big nanoparticle aggregates, and the structural properties of DMTAP were significantly perturbed by adsorption on the Ag nanoparticles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
We have investigated the photochemical characteristics of silver 4‐nitrobenzenethiolate (Ag‐4NBT) by means of Raman spectroscopy. When Ag‐4NBT is irradiated with an argon ion laser at 514.5 nm, its Raman spectrum changes over time, resulting in the production of 4NBT‐capped silver nanoparticles. The surface‐enhanced Raman scattering (SERS) spectrum of 4NBT adsorbed on those Ag nanoparticles is subsequently converted to that of 4‐aminobenzenethiol (4ABT). These surface‐induced photoreduction characteristics were investigated by monitoring the growth of Raman peaks of 4ABT as a function of the laser exposure time. Water vapor or ambient conditions were more effective than vacuum conditions for the photoreduction of 4NBT to 4ABT. Nonetheless, the occurrence of photolysis even under vacuum conditions suggests that the benzene ring hydrogen atoms might be the H‐atom source of the nitro‐to‐amine group conversion although in ambient conditions water or solvent molecules trapped inside the Ag‐4NBT should be the primary H‐atom source and facilitate the transfer of electrons, as well as the diffusion of Ag atoms to form highly SERS‐active nanoaggregates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
There is an increasing interest in developing surface enhancement Raman spectroscopy methods for intracellular biomolecule and for in vitro protein detection that involve dye or protein–dye conjugates. In this work, we have demonstrated that protein adsorption on silver nanoparticle (AgNP) can significantly attenuate the surface‐enhanced Raman spectroscopy (SERS) signal of dye molecules in both protein/dye mixtures and protein/dye conjugates. SERS spectra of 12 protein/dye mixtures were acquired using 4 proteins [bovine serum albumin (BSA), lysozyme, trypsin, and concanavalin A] and three dyes [Rhodamine 6G, adenine, and fluorescein isothiocyanate (FITC)]. Besides the protein/dye mixtures, spectra were also obtained for the free dyes and four FITC‐conjugated proteins. While no SERS signal was observed in protein/FITC mixtures or conjugates, a significantly reduced SERS intensity (up to 3 orders of magnitude) was observed for both R6G and adenine in their respective protein mixtures. Quantitative estimation of the number of dye molecules absorbed onto AgNP implied that the degree of R6G SERS signal reduction in the R6G/BSA sample is 2 to 3 orders of magnitude higher than what could be accounted for by the difference in the amount of the absorbed dyes. This finding has significant implications for both intracellular SERS analyses and in vitro protein detection using SERS tagging strategies that rely on Raman dyes as reporter molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
刘江美  刘文涵  滕渊洁  袁荣辉 《发光学报》2015,36(12):1477-1484
采用共沉淀法合成Fe3O4纳米颗粒,再以柠檬酸三钠还原AgNO3获得了具有SERS活性的Fe3O4@Ag磁性纳米复合材料。基于密度泛函理论(DFT)的量子化学计算方法和表面增强拉曼光谱(SERS)技术,从理论计算和实验测定表征探讨了2-噻吩甲酸(2-TCA)在Fe3O4@Ag表面的吸附行为和增强效应。结果表明:理论计算得到的拉曼光谱与实际测得的常规拉曼光谱基本一致,而在DFT理论计算中所键连的Ag原子数越多,与实测值就越接近。溶液的浓度和pH对拉曼增强效果有很大的影响,当溶液的pH=3且浓度为1×10-4 mol·L-1时有最大拉曼增强效应。峰强随2-TCA浓度的增加呈现先增大后减小的趋势,浓度过大会导致大量2-TCA分子吸附聚集在Ag表面形成局部"拥堵",阻碍了激发光尤其是光谱信号的散射通过,从而减弱了拉曼增强效应。pH的变化使溶液中2-TCA分子形态发生改变,结构形态不同,其在Ag表面的吸附方式也不同。中性C4H3SCOOH分子以环上S:形式垂直吸附键合在Ag表面,形成S—Ag配位键而产生SERS光谱。-1价C4H3SCOO-离子以S—Ag配位和O—Ag共价"双键合"侧卧方式共同吸附在Ag表面而产生SERS光谱。在Ag表面,以单独S—Ag配位键吸附或键合的能力比S—Ag配位和O—Ag共价共同吸附方式要弱,但其产生的SERS信号更强,故2-TCA中性分子比2-TCA-离子更有利于SERS的产生。随着pH值的增加,溶液中的2-TCA由中性分子逐渐转化为-1价的C4H3SCOO-离子,因而在pH>3以后,拉曼增强效应逐步减弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号