首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doping of Nd distorts the lattice structure of CeO2, increases the lattice strain and expands the lattice. Oxygen vacancies and other ceria related defects contribute to the lattice strain. Shifting and broadening of the F2g Raman peak of doped sample, compared to pure CeO2, is indicative of local structure distortion on doping. Dopant induced enhancement of oxygen vacancies, in the CeO2 lattice, is further confirmed by the generation of a new Raman peak at 543 cm?1 that is otherwise absent in the pure one. UV–vis spectroscopy gives an understanding of the different types of ff electronic transition of Nd in the crystalline environment of CeO2. Effective band gap of CeO2 reduces upto Nd concentration of 2.5%. The band gap, however, increases at 4% of Nd due to Burstein–Moss shift. Photoluminescence intensity of pure CeO2 decreases with Nd concentration owing to the increase in the number of non radiative oxygen vacancies. These vacancies act as luminescence quencher and reduce the emission intensity. Photoluminescence excitation spectra confirm the presence of these oxygen vacancies in the CeO2 nanocrystallites.  相似文献   

2.
Cobalt-doped ceria nanoparticles were synthesized using the polyol method under co-precipitation hydrolysis. The structural, morphological, optical and redox properties were observed to investigate the influence of different concentration of cobalt ion doping on the prepared CeO2 nanomaterials in terms of X-ray diffraction, field-emission transmission electron microscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, UV/vis absorption spectroscopy and temperature program reduction techniques. The optical band gap energy was calculated from the optical absorption spectra for doped ceria nanoparticles, which have been found to be 2.68, 2.77, and 2.82 eV for the 2, 4, and 7 mol% Co ion-doped CeO2 nanoparticles, respectively. As observed, the band gap energies increases as the doping Co ion concentrations increased, which could be due to significant increased oxygen vacancies with Co doping. The synergistic interaction between Co and CeO2 was the main factor responsible for high catalytic activity of cobalt-doped CeO2 model catalysts.  相似文献   

3.
《Current Applied Physics》2015,15(11):1428-1434
In the present study, structural, optical, magnetic properties as well as cytotoxicity of undoped and Fe doped Ceria (CeO2) nanoparticles synthesized by simple soft chemical method have been reported. SEM and XRD results have shown that the synthesized samples are comprised of ultrafine spherical nanoparticles having single phase cubic fluorite structure of CeO2. Raman spectroscopy results have depicted a red shift in F2g mode with Fe doping which reveals enhancement in the oxygen vacancies. The optical band gap calculated from UV–visible absorption spectra has been found to vary unsystematically with Fe doping which is associated with the creation of impurity level and abundance in oxygen vacancies with Fe doping. The oxygen vacancies have introduced the room temperature ferromagnetism (RTFM) in undoped and Fe doped CeO2 nanoparticles. The saturation magnetization (Ms) value of pristine CeO2 nanoparticles has been found to be 0.00083 emu/g which is increased up to 0.0126 emu/g for 7% Fe doped nanoparticles. For cytotoxicity tests, the synthesized nanoparticles induced effects on Neuroblastoma cancer cells & HEK-293 healthy cells have been analyzed via CCK-8 analysis. It has been observed that the prepared undoped and Fe doped CeO2 nanoparticles have nontoxic nature towards healthy cells while they are extremely toxic towards cancerous cells. Furthermore, the anticancer activity is found to enhance with Fe doping. The selective toxicity and enhancement in anticancer activity with Fe doping has observed to be strongly correlated with reactive oxygen species (ROS) generation.  相似文献   

4.
5.
Raman spectroscopy is a powerful technique for detecting peroxo (O2)2– and superoxo (O2) species adsorbed on defect sites of ceria. These sites are probed by reducing CeO2 at high temperature and then chemisorbing oxygen species at low temperature. In the present study, it is shown for the first time that such Raman characterization has to be achieved at very low laser power to avoid formation of oxygen species by photolysis and analyze only the chemisorbed species. Respecting this requirement, the (O2)2– and (O2) species formed on 0.7% Pt/CeO2 compound, and the CeO2 support used to prepare it were compared after reduction for various times and at various temperatures. Superoxo species were more stabilized on reduced 0.7% Pt/CeO2 after short reduction at 773 K than on reduced CeO2. Additionally, the distributions of peroxo species adsorbed on defect sites of Pt/CeO2 and CeO2 were significantly different after long reduction at 773 K in spite of similar amounts. Indeed, less stable species were formed during the reduction of 0.7% Pt/CeO2. These two features revealed that new sites were created during the preparation and reduction of Pt/CeO2 compared to its bare support. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Pure and Co-doped single-phase CeO2 crystals were synthesized by a solid-state reaction method. Samples of different oxygen vacancy concentration were studied, including (1) as-sintered crystals, (2) powders ground from the same crystal, and (3) a cold-pressed pellet from the ground powder that was unannealed and annealed at 800 °C. By analyzing the magnetic behaviors, surface/volume ratio and O vacancy concentration, the effects of oxygen vacancies on the room-temperature ferromagnetism (RT-FM) of Co-doped CeO2 were systematically investigated. The results confirm that the RT-FM observed in Co-doped CeO2 has a direct relationship with the oxygen vacancy concentration, and support the oxygen vacancy mediated FM mechanism.  相似文献   

7.
A tin layer 0.8 nm thick was deposited onto the CeO2(1 1 1) surface by molecular beam deposition at a temperature of 520 K. The interaction of tin with cerium oxide (ceria) was investigated by X-ray photoelectron spectroscopy (XPS), ultra-violet photoelectron spectroscopy (UPS) and resonant photoelectron spectroscopy (RPES). The strong tin-ceria interaction led to the formation of a homogeneous bulk Ce-Sn-O mixed oxide system. The bulk compound formation is accompanied by partial Ce4+ → Ce3+ reduction, observed as a giant 4f resonance enhancement of the Ce3+ species. CeO2 and SnO2 oxides were formed after oxygen treatment at 520 K. The study proved the existence of strong Ce-Sn interaction and charge transfer from Sn to the Ce-O complex that lead to a weakening of the cerium-oxygen bond, and consequently, to the formation of oxygen deficient active sites on the ceria surface. This behavior can be a key for understanding the higher catalytic activity of the SnOx/CeOx mixed oxide catalysts as compared with the individual pure oxides.  相似文献   

8.
Co-doped ZnO (Zn0.95Co0.05O) rods are fabricated by co-precipitation method at different temperatures and atmospheres. X-ray diffraction, Energy dispersive X-ray spectroscopy and Raman results indicate that the samples were crystalline with wurtzite structure and no metallic Co or other secondary phases were found. Raman results indicate that the Co-doped ZnO powders annealed at different temperatures have different oxygen vacancy concentrations. The oxygen vacancies play an important role in the magnetic origin for diluted magnetic semiconductors. At low oxygen vacancy concentration, room temperature ferromagnetism is presented in Co-doped ZnO rods, and the ferromagnetism increases with the increment of oxygen vacancy concentration. But at very high oxygen vacancy concentration, large paramagnetic or antiferromagnetic effects are observed in Co-doped ZnO rods due to the ferromagnetic-antiferromagnetic competition. In addition, the sample annealed in Ar gas has better magnetic properties than that annealed in air, which indicates that O2 plays an important role. Therefore, the ferromagnetism is affected by the amounts of structural defects, which depend sensitively on atmosphere and annealing temperature.  相似文献   

9.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

10.
The reactive vacuum deposition of CeO2 on Cu(1 1 1) surface in oxygen atmosphere provides high quality epitaxial ceria overlayers. We report the growth characteristics of Ce oxide, the structures, and the temperature stability of the oxide phases as investigated by low-energy electron diffraction (LEED) and X-ray photoelectron spectroscopy. We find that Ce oxide on the Cu(1 1 1) grows initially in the form of islands giving sharp hexagonal LEED pattern of the CeO2(1 1 1) structure corresponding to the (1.5 × 1.5) structure. The CeO2-Cu(1 1 1) films exhibited mixed valence states and temperature dependent CeO2-Ce2O3 transition above 900 K due to the vacuum annealing. The transition progressed more rapidly at the surface, probably by formation of oxygen vacancies.  相似文献   

11.
Jun Fang 《Applied Surface Science》2007,253(22):8952-8961
We have investigated the geometric and electronic structures of the cerium oxide (CeO2)-titanium dioxide (TiO2) mixed oxides with various Ce/TiO2 weight ratios prepared by the sol-gel method in detail by means of X-ray diffraction (XRD), high-resolution X-ray photoelectron spectroscopy (XPS), Raman spectroscopy excited by 325 and 514.5 nm lasers, and scanning electron microscope (SEM). Existence of cerium effectively inhibits the phase transition of TiO2 from the anatase phase to the rutile phase. XRD peaks of TiO2 anatase attenuate continuously with the increasing amount of CeO2 in the mixed oxide, but the XRD peaks of cubic CeO2 appear only after the weight ratio of Ce/TiO2 reaches 0.50. The average crystalline sizes of TiO2 anatase and cubic CeO2 in CeO2-TiO2 mixed oxides are smaller than those in the corresponding individual TiO2 anatase and cubic CeO2. Raman spectroscopy excited by the 514.5 nm laser detects CeO2 after the weight ratio of Ce/TiO2 reaches 0.70 whereas Raman spectroscopy excited by the 325 nm laser detects CeO2 after the weight ratio of Ce/TiO2 reaches 0.90. XPS results demonstrate that Ti exists in the form of Ti4+ in the CeO2-TiO2 mixed oxide. Ce is completely in the form of Ce3+ in the mixed oxides with a 0.05 weight ratio of Ce/TiO2. With the increasing weight ratio of Ce/TiO2, Ce4+ dominates. On basis of these results, we proposed that CeO2 initially nucleates at the defects (oxygen vacancies) within TiO2 anatase, forming an interface bridged with oxygen between CeO2 and TiO2 anatase. At the interface, Ce species cannot substitute Ti4+ in the lattice of TiO2 anatase whereas Ti4+ can substitute Ce4+ in the lattice of cubic CeO2. The decreasing concentration of oxygen vacancies, the Ti-O-Ce interface, and the decreasing average crystalline size of TiO2 anatase act to inhibit the phase transformation of TiO2 anatase. With the increasing amounts of CeO2, the CeO2 clusters continuously grow and form cubic CeO2 nanocrystals. Spectroscopic results strongly demonstrate that the surface region of CeO2-TiO2 mixed oxide is enriched with TiO2.  相似文献   

12.
Ceria (CeO2) as a support, additive, and active component for heterogeneous catalysis has been demonstrated to have great catalytic performance, which includes excellent thermal structural stability, catalytic efficiency, and chemoselectivity. Understanding the surface properties of CeO2 and the chemical reactions occurred on the corresponding interfaces is of great importance in the rational design of heterogeneous catalysts for various reactions. In general, the reversible Ce3+/Ce4+ redox pair and the surface acid-base properties contribute to the superior intrinsic catalytic capability of CeO2, and hence yield enhanced catalytic phenomenon in many reactions. Particularly, nanostructured CeO2 is characterized by a large number of surface-bound defects, which are primarily oxygen vacancies, as the surface active catalytic sites. Many efforts have therefore been made to control the surface defects and properties of CeO2 by various synthetic strategies and post-treatments. The present review provides a comprehensive overview of recent progress in regulating the surface structure and composition of CeO2 and its applications in catalysis.  相似文献   

13.
Barium titanate (BaTiO3) crystal samples with different distribution of oxygen vacancies were prepared through different thermal treatment processes. The influences of oxygen vacancies on the Raman spectra and X-ray photoelectron spectroscopy (XPS) spectra of BaTiO3 single crystals were studied comparatively. Raman measurements of fast-cooled BaTiO3, which annealed in vacuum and then cooled in air showed many different spectroscopic results comparing with as-received BaTiO3 sample. Raman measurements of slow-cooled BaTiO3, which annealed in vacuum and then cooled in tube furnace exhibited few spectroscopic differences. XPS measurements of as-received BaTiO3 sample and fast-cooled BaTiO3 sample confirmed that this discrepancy resulted from the surface phase of oxygen vacancy in BaTiO3.  相似文献   

14.
The atomic defect structure of nonstoichiometric ceria was studied by means of X-ray diffraction. Polycrystalline samples of CeO2?x (0?x?0.21) have been examined at 900 and 1000°C, with the stoichiometry controlled by adjusting the oxygen partial pressure between 1 and 10?21 atm. It was observed that the lattice expands as a function of increasing defect concentration and exhibits only fluorite-like diffraction peaks. The integrated intensities of the Bragg reflections were analyzed for CeO2 and CeO1.91, at 900°C by difference electron-density techniques. It was concluded that the cation sublattice is essentially intact, and that the oxygen sublattice must be defective in nonstoichiometric ceria. Least-squares analyses on CeO2?x (0?x? 0.21) at 900 and 1000°C supported the electron-density results and also showed that the temperature factors of both cations and anions increase with an increase in defect concentration, implying greater mean-square displacement of the atoms from their equilibrium positions.  相似文献   

15.
The structure, magnetic and electrical transport properties of La0.5Sr0.5MnO3 annealed in different atmosphere have been investigated. No evident change of structural symmetry and the Curie temperature is observed for the samples. The resistivity at zero magnetic field of the samples annealed in air and nitrogen exhibits a metal–insulator transition, while no metal–insulator transition is observed for the sample annealed in oxygen, and for which the resistivity decreases monotonously with increasing temperature. Surprisingly, when an external magnetic field is applied, a metal–insulator transition appears for the sample annealed in oxygen. It is suggested that the annealing atmosphere affects the competition between FM and AFM phases due to the change of Mn4+/Mn3+ ratio and the oxygen/cation vacancies, and has a great influence on the electrical transport properties of La0.5Sr0.5MnO3.  相似文献   

16.
Ceria rare earth solid solutions are known as solid electrolyte with potential application in oxygen sensors and solid oxide fuel cells. We report the preparation of gadolinia-doped ceria, Ce0.90Gd0.10O1.95, by the conventional solid-state reaction method and the preparation of thin films from a sintered pellet of gadolinia-doped ceria by the pulsed laser deposition technique. The effect of process conditions, such as substrate temperature, oxygen partial pressure, and laser energy on microstructural properties of these films are examined using powder X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.  相似文献   

17.
Novel multifunctional ceria based materials may show an improved performance in catalytic processes involving CO2 activation and reforming of hydrocarbons. Towards a more detailed understanding of the underlying surface chemistry, we have investigated CO2 activation on single crystal based ceria and magnesia/ceria model catalysts. All model systems are prepared starting from well-ordered and fully stoichiometric CeO2(111) films on a Cu(111) substrate. Samples with different structure, oxidation state and compositions are generated, including CeO2-x/Cu(111) (reduced), MgO/CeO2-x/Cu(111) (reduced), mixed MgO-CeO2/Cu(111) (stoichiometric), and mixed MgO-CeO2-x/Cu(111) (reduced). The morphology of the model surfaces is characterized by means of scanning tunneling microscopy (STM), whereas the electronic structure and reactivity is probed by X-ray photoelectron spectroscopy (XPS). The experimental approach allows us to compare the reactivity of samples containing different types of Ce3+, Ce4+, and Mg2+ ions towards CO2 at a sample temperature of 300 K. Briefly, we detect the formation of two CO2-derived species, namely carbonate (CO3 2-) and carboxylate (CO2 -) groups, on the surfaces of all investigated samples after exposure to CO2 at 300 K. In parallel to formation of the carbonate species, slow partial reoxidation of reduced CeO2-x/Cu(111) occurs at large doses of CO2. The reoxidation of the reduced ceria is largely suppressed on MgO-containing samples. The tendency for reoxidation of Ce3+ to Ce4+ by CO2 decreases with increasing degree of intermixing between MgO and CeO2-x. Additionally, we have studied the stability of the formed carbonate species as a function of annealing temperature.  相似文献   

18.
The morphology of ceria films grown on a Ru(0 0 0 1) substrate was studied by scanning tunneling microscopy in combination with low-energy electron diffraction and Auger electron spectroscopy. The preparation conditions were determined for the growth of nm-thick, well-ordered CeO2(1 1 1) films covering the entire surface. The recipe has been adopted from the one suggested by Mullins et al. [D.R. Mullins, P.V. Radulovic, S.H. Overbury, Surf. Sci. 429 (1999) 186] and modified in that significantly higher oxidation temperatures are required to form atomically flat terraces, up to 500 Å in width, with a low density of the point defects assigned to oxygen vacancies. The terraces often consist of several rotational domains. A circular shape of terraces suggest a large variety of undercoordinated sites at the step edges which preferentially nucleate gold particles deposited onto these films. The results show that reactivity studies over ceria and metal/ceria surfaces should be complemented with STM studies, which provide direct information on the film morphology and surface defects, which are usually considered as active sites for catalysis over ceria.  相似文献   

19.
Xin Jiang  Hui Deng 《Applied Surface Science》2011,257(24):10883-10887
Au-CeO2/SiO2 was prepared via adsorbed-layer reactor technique combined with alcohol-thermal treatment. The catalytic performance in complete oxidation of benzene was investigated. TEM, Raman characterization showed that Au particles grew up obviously during alcohol-thermal process, while CeO2 particles maintained 4 nm in diameter. The content of oxygen vacancies and adsorbed oxygen species on catalysts surface increased apparently. Alcohol-thermally treated Au-CeO2/SiO2 and CeO2/SiO2 showed similar change in catalytic performance, and were much superior to calcined CeO2/SiO2. Of alcohol-thermally treated and calcined CeO2/SiO2, initial temperatures of the reaction were 80 °C and 150 °C, respectively. The benzene conversions reached 85% and 40% at 300 °C.  相似文献   

20.
Multiferroic BiFeO3/Bi3.25La0.75Ti3O12 films annealed in different atmospheres (N2 or O2) were prepared on Pt/Ti/SiO2/Si substrates via a metal organic decomposition method. Based on our experimental results, it is considered that, in the films annealed in N2, fewer Fe2+ ions while more oxygen vacancies are involved. As a result, at room temperature, predominated by the reduced Fe2+ fraction, lower leakage current and dielectric loss, better ferroelectric property while reduced magnetization are observed. However, the oxygen vacancies might be thermally activated at elevated temperature; thus, more strongly temperature-dependent leakage current and a higher dielectric relaxation peak are observed for the films annealed in N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号