首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface‐enhanced Raman scattering from carbon nanotube bundles adsorbed with plasmon‐tunable Ag‐core Au‐shell nanoparticles (Ag@Au nps) was carried out for the first time. By utilizing nanoparticles whose plasmon resonance peak (541, 642 nm) closely matches the commonly used Raman excitation sources (532, 632.81 nm), we can observe a large enhancement in the Raman signatures of carbon nanotubes. We obtain greater enhancement in the Raman signal for the above case when compared to nanotubes adsorbed with conventional Ag, Au or other ‘off resonant’ Ag@Au nps. The power‐dependent SERS experiment on single‐walled nanotubes (SWNTs) with resonant Ag@Au nps reveals a linear behavior between the G‐band intensity and the photon flux density, which is in agreement with the vibrational pumping model of SERS. The observed enhancement by resonance matching is pronounced for carbon nanotubes and may lead to insights into understanding nanotube–nanoparticle interaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
An analytical approach using enhanced Raman spectroscopy to record molecular vibrations and associated molecular images within nanometric apertures is presented, which can essentially rival or surpass its counterparts, i.e. fluorescence microscopy, by providing unique structure‐specific information forward to chemical identification and structure elucidation. Utilizing a precise nanolithographic technology and the following chemically electroless silver deposition procedure, we deliberately construct the large scale zero‐mode waveguide array in gold film with embossed silver nanostructures on the bottom of nanowells capable of acquiring enhanced Raman spectra with substantial sensitivity and high chemical fidelity. Two chemicals, aminothiophenol (4‐ATP) and Rhodamine 6G, respectively, are employed as molecular indicators to successfully demonstrate the capability of this analytical strategy by exhibiting high‐quality Raman spectra and 2D chemical‐specific images. With a high magnitude objective (60×), we enable to acquire Raman spectra from a single nanometric aperture and quantitatively determine a peak enhancement factor of 3.63 × 105 for ATP, while 1.25 × 106 to Rhodamine 6G, comparable with a regular nanoparticle‐based surface‐enhanced Raman spectroscopy‐active substrate. Overall, the compelling characteristics of this detection scheme highlight its privileges for interrogating the individual molecular behavior in extremely confined geometry and illustrating the chemical insights of trace components without any labeling reagent and extra sample preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Many trace chemical analyses are being transitioned from the lab to the field, among which is surface‐enhanced Raman spectroscopy. Although initial portable Raman analyzers primarily employ 785 nm laser excitation, recent studies suggest longer wavelengths, with an appropriate surface‐enhanced Raman‐active substrate, may provide equal sensitivity. Furthermore, 1550 nm excitation may provide added safety for the user, in that permanent retina damage does not occur. Here, we show that a reasonable enhancement factor can be obtained for melamine using 1550 nm laser excitation that is nearly equivalent to those obtained using 785 and 1064 nm laser excitation. We also demonstrate that a number of other chemicals of interest can be measured by 1550 nm surface‐enhanced Raman scattering, albeit only modest sensitivity is achieved because of instrument limitations, not enhancement factors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Micro‐Raman spectroscopy has been used on adult bivalve shells to investigate organic and inorganic shell components but has not yet been applied to bivalve larvae. It is known that the organic matrix of larval shells contains pigments, but less is known about the presence or source of these molecules in larvae. We investigated Raman spectra of seven species of bivalve larvae to assess the types of pigments present in shells of each species and how the ratio of inorganic : organic material changes in a dorso‐ventral direction. In laboratory experiments, we reared larvae of three clam species in waters containing different organic signatures to determine if larvae incorporated compounds from source waters into their shells. We found differences in spectra and pigments between most species but found less intraspecific differences. A neural network classifier for Raman spectra classified five out of seven species with greater than 85% accuracy. There were slight differences between the amount and type of pigment present along the shell, with the prodissoconch I and shell margin areas being the most variable. Raman spectra of 1‐day‐old larvae were found to be differentiable when larvae were reared in waters with different organic signatures. With micro‐Raman spectroscopy, it may be possible to identify some unknown species in the wild and trace their natal origins, which could enhance identification accuracy of bivalve larvae and ultimately aid management and restoration efforts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Non‐degenerate second‐order scattering due to interaction of infrared and ultraviolet pulses is observed in picosecond infrared‐pump/anti‐Stokes Raman‐probe experiments under electronic resonance conditions. We detected resonance hyper‐Rayleigh scattering at the sum frequency of the pulses as well as the corresponding frequency‐down‐shifted resonance hyper‐Raman lines. Nearly coinciding resonance hyper‐Raman and one‐photon resonance Raman spectra indicate conditions of A‐term resonance Raman scattering. Second‐order scattering is distinguished from transient anti‐Stokes Raman scattering of v = 1 to v = 0 transitions and v = 1 to v′ = 1 combination transitions by taking into account their different spectral and temporal behaviour. Separating these processes is essential for a proper analysis of transient vibrational populations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The use of Raman spectroscopy for the qualitative and quantitative analysis of dilute aqueous solutions is of interest to the biopharmaceutical manufacturing sector. However, the inherent weakness of the Raman effect, coupled with spectral variability due to spurious signals from sample holders, can produce significant problems for chemometric‐based high‐throughput assays. Therefore, there is a need for a multi‐well sample holder that ensures robust and repeatable measurements, in particular from dilute aqueous solutions such as cell culture media. Here we demonstrate the efficacy of a novel, electropolished, stainless steel multi‐well plate (SS‐MWP) sample holder with 96 wells for dilute aqueous solution analysis. A comprehensive study of the spectroscopic behaviour was carried out and comparisons made with multi‐well plates fabricated from polystyrene, polypropylene, and aluminium. A key factor in the validation studies is the use of intrinsically weak Raman scattering systems, e.g. water and dilute glucose solutions. The data collected show that the SS‐MWPs are much superior in terms of robustness, resistance to chemical attack, and measurement reproducibility and as such are the ideal sample holders for Raman analysis of dilute solutions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A selection of 15 painted enamels, most of which belong to Limoges productions, from 1500 to 1900 A.D. , has been studied on‐site in the storage rooms of musée des Arts décoratifs in Paris. The Raman signatures of the transparent and/or opacified glass matrix are discussed and compared with those which were previously recorded on glazed pottery, enamelled and stained glasses as well as Chinese cloisonné enamels. Analysed enamels mostly belong to soda‐lime‐based glass. Three types of compositions such as soda‐lime (fifteenth to sixteenth century), soda‐rich (fifteenth, sixteenth/nineteenth centuries) and lead‐potash‐lime (sixteenth and nineteenth centuries) are identified on the basis of the Raman signature of the glaze according to the wavenumber maxima of the Si O stretching and bending multiplets. The pigment signatures are similar to those recorded on ceramic glazes and glass enamels, which proves the similarity of the technologies. Cassiterite as an opacifier and hematite red and Naples yellow pigment variations give characteristic Raman signatures. The presence of lead arsenate as a pigment opacifier in nineteenth‐century samples is confirmed. Attempts are made to establish tools for the differentiation between genuine artefacts and nineteenth‐century restoration or fakes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
11.
The partitioning of a hydrophobic hexapeptide, N‐acetyl‐tryptophan‐pentaleucine (AcWL5), into self‐associated β‐sheets within a vesicle membrane was studied as a model for integral membrane protein folding and insertion via vibrational and electronic spectroscopy. Ultraviolet resonance Raman spectroscopy allows selective examination of the structures of amino acid side chains and the peptide backbone and provides information about local environment and molecular conformation. The secondary structure of AcWL5 within a vesicle membrane was investigated using 207.5‐nm excitation and found to consist of β‐sheets, in agreement with previous studies. The β‐sheet peptide shows enhanced Raman scattering cross‐sections for all amide modes as well as extensive hydrogen‐bonding networks. Tryptophan vibrational structure was probed using 230‐nm excitation. Increases in Raman cross‐sections of tryptophan modes W1, W3, W7, W10, W16, W17, and W18 of membrane‐incorporated AcWL5 are primarily attributed to greater resonance enhancement with the Bb electronic transition. The W17 mode, however, undergoes a much greater enhancement than is expected for a simple resonance effect, and this observation is discussed in terms of hydrogen bonding of the indole ring in a hydrophobic environment. The observed tryptophan mode frequencies and intensities overall support a hydrophobic environment for the indole ring within a vesicle, and these results have implications for the location of tryptophan in membrane protein systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The spectroscopic basis for extraterrestrial life‐detection through the molecular signatures of relevant biomaterials is dependent upon several instrumental facilities which could effect the diagnostic interpretation of key Raman bands from relevant substances occurring together in the geological record. To this effect, the Raman spectra of several polyaromatic hydrocarbons have been investigated under different conditions of spectral resolution using FT‐Raman‐spectroscopy operating at 1064 nm laser excitation wavelength. The observed Raman spectra are considerably altered under different conditions of spectral resolution; in particular, the discrimination between several polyaromatic hydrocarbons and beta‐carotene no longer becomes possible as the spectral resolution decreases. These results are relevant for the evaluation of miniaturised Raman spectrometers for space flight missions and incorporation into instrumentation for landers and rovers being proposed for future missions to Mars. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper recent research progress on the use of Coherent Anti‐Stokes Raman Scattering (CARS) in Raman lasers and Raman wavelength converters is reviewed. The latest insights in the physical nature and behavior of CARS are addressed, and the recent performance breakthroughs in CARS‐based Raman wavelength conversion are discussed. Based on the new findings regarding the behavior of CARS, a physical explanation for apparent inconsistencies in various experimental observations of Raman wavelength conversion is provided. To conclude it is shown that these recent insights also pave the way to the development of a novel CARS‐based mechanism for reducing the heat dissipation in Raman lasers.  相似文献   

14.
The paper reports on a routine to extract the composition of multi‐component mixtures from their Raman spectra at elevated pressures. The strategy is based on fitting weighted Raman spectra of the pure compounds to the measured Raman spectrum of the mixture, also considering the effects of intermolecular interactions onto the Raman spectra by applying Gaussian and Voigt profile deconvolution of the Raman peaks. Thereby, an improved accuracy compared to previous evaluation strategies could be obtained. The more accurate data of the ternary mixtures of carbon dioxide, water and organic solvents are presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Ultraviolet‐resonance Raman (UV‐RR) micro‐spectroscopy is an appropriate and sensitive tool to assess the chromophore structures in bleached cellulosic pulps used for papermaking. The particular selectivity in detection and identification of chromophores in pulps is achieved by acquiring the UV‐RR spectra in the solid state with laser excitation at 325 nm. This wavelength corresponds to absorption of poly‐unsaturated chromophore structures in partially bleached/fully bleached pulps, and linearly correlated with the signal at ca 1600 cm−1 in the UV‐RR spectra. The characteristic vibrations from particular pulp chromophore structures have been assigned from experiments with model compounds, thus allowing the establishment of a UV‐RR database. Among the components of bleached pulp, the xylan–lignin complex was suggested to be an important source of chromophores. The monitoring of pulp bleaching by UV‐RR allowed us to suggest that it is the formation of new polysaccharide‐derived chromophores upon bleaching that hinders development of further brightness and is co‐responsible for the brightness reversion of fully bleached pulps. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Detailed studies of the mechanism of surface‐enhanced (resonance) Raman spectroscopy (SE(R)RS), and its applications, place a number of demands on the properties of SERS scatterers. With large Raman cross‐sections, versatile synthetic chemistry and complete lack of fluorescence, free dipyrrins meet these demands but the Raman and SE(R)RS spectroscopy of free dipyrrins is largely unknown. The first study of the Raman spectroscopy of free dipyrrins is therefore presented in this work. The nonresonant Raman, resonant Raman and surface‐enhanced Raman spectra of a typical meso aryl‐substituted‐dipyrrin are reported. Absolute differential cross‐sections are obtained for excitation wavelengths in the near infrared and visible region, in solution phase and for dipyrrin adsorbed on the surface of silver nanoparticles. Raman enhancement factors for SERRS and resonance Raman are calculated from the observed differential cross‐sections. The magnitudes of the resonantly enhanced cross‐sections are similar to those recently reported for strong SERS dyes such as Rhodamine 6G and Crystal Violet. Free dipyrrins offer the advantages of existing SERS dyes but without the drawback of strong fluorescence. Free dipyrrins should therefore find applications in all areas of Raman spectroscopy including fundamental studies of the mechanisms of SERS and bioanalytical and environmental applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
We have been able to observe the surface‐enhanced Raman scattering (SERS) from 4‐mercaptopyridine (4‐Mpy) molecules adsorbed on ZnO nanocrystals, which display 103 enhancement factors (EFs). An excitation wavelength‐dependent behavior is clearly observed. Another molecule BVPP is also observed to have surface‐enhanced Raman signals. The chemical enhancement is most likely responsible for the observed enhancement, since plasmon resonances are ruled out. The research is important not only for a better understanding of the SERS mechanism, but also for extension of the application of Raman spectroscopy to a variety of adsorption problems on a semiconductor surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Measurement and interpretation of the excitation wavelength dependence of surface‐enhanced Raman scattering (SERS) spectra of molecules chemisorbed on plasmonic, e.g. Ag nanoparticle (NP) surfaces, are of principal importance for revealing the charge transfer (CT) mechanism contribution to the overall SERS enhancement. SERS spectra, their excitation wavelength dependence in the 445–780‐nm range and factor analysis (FA) were used for the identification of two Ag‐2,2′:6′,2″‐terpyridine (tpy) surface species, denoted Ag+–tpy and Ag(0)–tpy, on Ag NPs in systems with unmodified and/or purposefully modified Ag NPs originating from hydroxylamine hydrochloride‐reduced hydrosols. Ag+–tpy is a spectral analogue of [Ag(tpy)]+ complex cation, and its SERS shows virtually no excitation wavelength dependence. By contrast, SERS of Ag(0)–tpy surface complex generated upon chloride‐induced compact aggregate formation and/or in strongly reducing ambient shows a pronounced excitation wavelength dependence attributed to a CT resonance (the chemical mechanism) contribution to the overall SERS enhancement. Both the resonance (λexc = 532 nm) and off‐resonance (λexc = 780 nm) pure‐component spectra of Ag(0)–tpy obtained by FA are largely similar to surface‐enhanced resonance Raman scattering (λexc = 532 nm in resonance with singlet metal to ligand CT (1 MLCT) transition) and SERS (λexc = 780 nm) spectra of [Fe(tpy)2]2+ complex dication. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A liquid‐core metal‐cladding waveguide structure of millimeter scale is designed to enhance Raman signal via the excitation of Fabry–Perot‐like resonance. Theoretically, an oscillating field distribution covering the whole guiding layer is generated by the multireflection at the two metal interfaces. The large detection area covers the whole sample chamber because of the oscillating nature of excited high order modes with concentrated intensity. By adding metal nanoparticles, the Fabry–Perot‐like resonance can be combined with local surface plasmons resonance to further enhance the light‐matter interaction with the target molecules, which is also confirmed by the experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The resonance Raman spectra of microperoxidase‐11 loaded into the siliceous materials MCM‐41 and SBA‐15 demonstrate a pH dependence indicative of a protonation event on the substrate. An unusual change in relative Raman intensities without a shift in wavenumbers is observed upon lowering the system pH. Protonation of the silica surface is suggested to induce a reorientation of the MP‐11 fragments within the silica framework. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号