首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
As a model of an electrode reaction of a big particle, vinylferrocene immobilized on polystyrene latex particles were synthesized by copolymerization with styrene sulfonate and styrene. They had almost mono-dispersed spheres with 1.2 μm in diameter, and each had 3.1 × 107 ferrocene units. The particles adsorbed on pyrolytic graphite electrode (PGE) showed the redox activity for the ferrocene unit in NaBF4 aqueous solution. Particles without the sulfonate group had no electroactivity, and hence the electroactivity needs ionic micro-environment around the ferrocene unit. From the faradaic charge of the ferrocene unit, the electroactive sites per particle were estimated to be about 8% of the whole immobilized ferrocene units. A model of this partial charge transfer was proposed, in which the particles are adsorbed in hollows of the rough surface of the PGE.  相似文献   

2.
A potassium ion-selective electrode based on a cobalt(II)-hexacyanoferrate(III) (CHCF) film-modified glassy carbon electrode is proposed. The electroactive film is introduced onto the glassy carbon electrode surface by electrodeposition of cobalt, which forms a thin CHCF film on subsequent anodic scanning in KClHCl solution (pH 5.0–5.5) containing K3Fe(CN)6. The thickness of the film on the electrode surface can be controlled by changing the electrodeposition time and the concentrations of cobalt(II) and Fe(CN)3?6 ions. The modified electrode exhibits a linear response in the concentration range 1 × 10?1 ?3 × 10?5 M potassium ion activity, with a near-Nernstian slope (48–54 mV per decade) at 25 ± 1°C. The detection limit is 1 × 10?5 M. The stability, response time and selectivity were investigated. The electrode exhibits good selectivity for potassium ion with the twelve cations investigated. The relative standard deviation is 1.5% (n=10). The effects of the thickness of the electroactive film and the pH of the solution on the electrode response were also investigated.  相似文献   

3.
In this study, a grafted polymer (GP) with ZnO nanoparticles (GP/ZnO NPs) was attached on the surface of glassy carbon electrode (GCE), in order to produce a new modified electrode (GP/ZnO NPs-GCE). The gamma irradiation method was used to grafted polystyrene (polymer) with acrylonitrile (monomer), while slow evaporation process was used to prepare the new modified electrode. The cyclic voltammetry (CV) of K4[Fe(CN)6] was used to study the electrochemical properties GP/ZnO NPs-GCE. The peak separation (ΔEpa-c) was 500 mV between the redox peaks of Fe(II)/Fe(III) in an aqueous solution of 1 M KCl and the current ratio of redox current peaks (Ipa/Ipc) was ≈ 1 for the modified electrode. This indicated that the modified electrode has s good reversibility and conductivity, wherefore; it was applied in the voltammetric filed. It was found that the modified electrode GP/ZnO NPs-GCE have a reasonable solubility and stability at various pH medium. Additionally, the sensitivity of the electrochemical analysis by cyclic voltammetric (CV) method is extensively subjected to the pH medium and the scan rate (SR). A couple of redox current peaks of K4[Fe(CN)6] in KCl solution was observed with a reversible process: Fe3+/Fe2+. Finally a good diffusion coefficient of electroactive species (D) for the new modified electrode was found in this study by chronoamperometry method using Cottrell equation.  相似文献   

4.
Potential cycling was used for oxidation of NAD+ and producing an electroactive redox couple which strongly adsorbed on the electrode surface modified with single walled carbon nanotubes (SWCNTs). Modified electrode shows a pair of well defined and nearly reversible redox peaks at pH range 1–13 and the response showed a surface‐controlled electrode process. The surface coverage and heterogeneous electron transfer rate constant (ks) of adsorbed redox couple onto CNTs films were about 6.32×10?10 mol cm?2 and 2.0 (±0.20) s?1, respectively, indicating the high loading ability of CNTs toward the oxidation product of NAD+ (2,8‐dihydroxy adenine dinucleotide) and great facilitation of the electron transfer between redox couple and CNTs immobilized onto electrode surface. The modified electrode exhibited excellent electrocatalytic activity for H2O2 reduction at reduced overpotential. The catalytic rate constant for H2O2 reduction was found to be 2.22(±0.20)×104 M?1 s?1. The catalytic reduction current allows the amperometric detection of H2O2 at an applied potential of ?0.25 V vs. Ag/AgCl with a detection limit of 10 pM and linear response up to 100 nM and resulting analytical sensitivity 747.6 nA/pM. The remarkably low detection limit (10 pM) is the lowest value ever reported for direct H2O2 determination on the electrodes at pH 7. The modified electrode can be used for monitoring H2O2 without the need for an enzyme or enzyme mimic. The proposed method for rapid amperometric detection of H2O2 is low cost and high throughput. Furthermore, the sensor can be used to any detection scheme that uses enzymatically generated H2O2 as a reactive product in biological systems.  相似文献   

5.
Accumulation of electroactive anions into a silicate film with covalently bonded room temperature ionic liquid film deposited on an indium tin oxide electrode was studied and compared with an electrode modified with an unconfined room temperature ionic liquid. A thin film containing imidazolium cationic groups was obtained by sol‐gel processing of the ionic liquid precursor 1‐methyl‐3‐(3‐trimethoxysilylpropyl)imidazolium bis(trifluoromethylsulfonyl)imide together with tetramethylorthosilicate on the electrode surface. Profilometry shows that the obtained film is not smooth and its approximate thickness is above 1 μm. It is to some extent permeable for a neutral redox probe – 1,1′‐ferrocene dimethanol. However, it acts as a sponge for electroactive ions like Fe(CN)63?, Fe(CN)64? and IrCl63?. This effect can be traced by cyclic voltammetry down to a concentration equal to 10?7 mol dm?3. Some accumulation of the redox active ions also occurs at the electrode modified with the ionic liquid precursor, but the voltammetric signal is significantly smaller compare with the bare electrode. The electrochemical oxidation of the redox liquid t‐butyloferrocene deposited on silicate confined ionic liquid film is followed by the expulsion of the electrogenerated cation into an aqueous solution. On the other hand, the voltammetry obtained with the electrode modified with t‐butyloferrocene solution in the ionic liquid precursor exhibits anion sensitive voltammetry. This is explained by anion insertion into the unconfined ionic liquid deposit following t‐butylferricinium cation formation.  相似文献   

6.
We designed a new electroactive peptide probe that has a molecular recognition function for the sensing of a protein. Ovalbumin (OVA) was the model protein, and when RNRCKGTDVQAW interacted with OVA, it conjugated with a tyrosine-rich peptide (Y4C). This peptide is electroactive, has a high degree of biocompatibility, and offers the possibility of gene expression. To measure the effect of a number of the tyrosine residues, voltammetric measurements were conducted using a series of tyrosine-rich peptides (YnC, n = 3–7) with sensitivities that ranged from 10−9 to 10−8 M. The electrode response of Y5C was the maximum value in the series. However, the peak current did not increase when the number of tyrosine residues was increased in a linear fashion. This may have been due to the micelles that are formed by a tyrosine-rich surfactant peptide. Thus, Y4C was suitable as an electroactive label for the construction of the peptide probe. The electrode response of Y4CRNRCKGTDVQAW obtained by a glassy carbon electrode was 100-fold that of tyrosine alone. The measurement of OVA via the peptide probe resulted in a detection on the order of 10−12 M. In contrast, the sensitivity of OVA using RCKGTDVQAWY4C probe was at the 10−11 M level, because the hydrophobic moiety gave it a molecular recognition function. The recoveries of the OVA using Y4CRNRCKGTDVQAW in a solution containing fetal bovine serum ranged between 98 and 101%. Consequently, the combination of a specific peptide and an electroactive element could be a powerful probe for the sensing of proteins.  相似文献   

7.
Li F  Feng Y  Yang L  Liu S 《Talanta》2010,83(1):205-209
A novel electrochemical sensing platform by modification of electroactive thionine (Th) onto gold electrode surface was constructed, which was realized by diazotization of 4-aminothiophenol (ATP) self-assembled monolayer, followed by coupling of Th with the diazonium group to form a covalent diazo bond. A pair of well-defined redox peaks of Th was observed in the cyclic voltammetric measurement. The resulting diazo-ATP monolayer displayed superior electrical conductivity, which contributed to the sensitive detection of hydrogen peroxide (H2O2). The immobilized Th also showed a remarkable stability, which may benefit from the π-π stacking force and the covalent diazo bond between diazo-ATP and Th molecules. Under the optimized experimental conditions, the current fabricated non-enzyme and reagentless sensor could show a rapid response to H2O2 within 3 s and a linear calibration plot ranged from 1.0 × 10−6 to 6.38 × 10−3 M with a detection limit of 6.7 × 10−7 M. The current fabrication strategy of electroactive interface is expected to be used as a versatile route for the immobilization of more electroactive molecules and offer more opportunities for the applications in electrochemical sensor, biosensor, electrocatalysis, etc.  相似文献   

8.
《Electroanalysis》2003,15(1):55-64
Electron transfer processes for selected redox systems (ferrocene0/+, decamethylferrocene0/+, N,N,N′,N′‐tetramethyl‐1,4‐phenylenediamine0/+, 7,7,8,8‐tetracyano‐quinonedimethane0/?/2?, cobaltocene0/+, C600/?, and benzoquinone0/?) at electrodes modified by precipitation of electrochemically inactive [MIII(bpy)3](ClO4)3 (M=Co and Fe, bpy=2,2′‐bipyridine) layers have been investigated by cyclic voltammetry and electrochemical quartz crystal microbalance studies. The mediation of heterogeneous electron transfer is observed for these systems. For an electrode modified with [MIII(bpy)3](ClO4)3, the rate of the electrocatalytic mediation process depends on the formal potential of the redox system. If the formal potential of the redox system is close to the potential of [CoII(bpy)3]2+ oxidation (as is the case with the decamethylferrocene0/+, N,N,N′,N′‐tetramethyl‐1,4‐phenylenediamine0/+ and 7,7,8,8‐tetracyanoquinonedimethane0/? systems), the rate of the electrode reaction is limited by the rate of the chemical reduction of the [CoIII(bpy)3](ClO4)3 solid phase by the reduced form of redox couple. For C60 and benzoquinone, which have more negative formal potentials for reduction, the rate of diffusion of the electroactive reactant to the electrode surface limits the rate of electrode process. The kinetics of mediated electrocatalysis are also affected by the solvent. In the case of the Fe(III)‐based layer, the diffusion of the electroactive reactant in the solution is the rate determining step for the catalytic process at the modified electrode for all studied systems. Electrodes modified with [FeIII(bpy)3](ClO4)3 have been used for the quantitative determination of electroactive compounds. For ferrocene and decamethylferrocene, a linear relationship between the catalytic reduction current and the concentration of reactant in the solution has been observed over the concentration range from 1 to 50 mM.  相似文献   

9.
The use of poylacrylamide is recommended instead of gelatin as an ideal maximum suppressor to be employed with both the rotated dropping mercury electrode (RODE) and conventional dropping electrode (DME). It is retained at the mercury surface over the entire potential range and does not combine with heavy metals. Reproducibility of the measurement of the residual current and that of the limiting current at the RDME were studied, and it was found that accurate determinations of a single constituent (±2%) are possible at concentrations as low as 1 to 2.10-5M. The variation of the limiting current with potential is much greater at the RDME than at the DME. This effect must be considered in the analysis of a mixture of electroactive species at the RDME. Method have been discussed for making the proper correction for a preceding wave when a limiting current of a mixture of constituents is measured. Because of its high sensitivity and good reproducibility of results, the RDME is recommended for the analysis of solutions containing one or more electroactive species at concentrations less than 10-4M.  相似文献   

10.
The instability of the limiting current of the cathodic reaction is studied in the I 3–I/Pt system with excess of potassium iodide at the electrode situated at the bottom of a vertical cylindrical channel. Dependence of parameters of the oscillation process on the concentration of electroactive and supporting ions and solution viscosity is analyzed. The deceleration of the transport processes in solutions containing glycerol is shown to be due to a considerable decrease in the triiodide ion diffusion coefficient.  相似文献   

11.
The carbon cavity microelectrode (CME), exhibiting a volume of 4×10?6 cm3, offers a genuine alternative for immobilizing and connecting enzymes in aqueous electrolytes by powder of insoluble redox materials. In the present work, the electrochemical behavior of two redox species such as ferrocene (Fc) and tetrathiafulvalene (TTF) was investigated with CME to evaluate their potentialities in the electrical wiring of enzymes. For this purpose, powder of two enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP), was independently mixed with an insoluble redox material and forced to fill the single micro cavity of a carbon electrode covered by an inert insulator. The presence of the electroactive species, as well as the enzyme wiring was investigated by cyclic voltammetry. The amperometric detection of glucose was carried out by potentiostating the TTF/GOx and the Fc/GOx microelectrodes at 0.25 and 0.35 V respectively. The amperometric detection of H2O2 by the TTF/HRP microelectrode was performed at ?0.1 V vs. SCE.  相似文献   

12.
This paper describes a novel redox flow battery–single flow acid Cd–chloranil battery. The electrolyte of this battery for both negative electrode and positive electrode is the aqueous intermixture of H2SO4–(NH4)2SO4–CdSO4, the negative electrode is inert metal such as copper foil, and the positive electrode is an insoluble organic material, tetrachloro-p-benzoquinone (chloranil). Typically, the electrolyte is continuously circulated to pass though the cells by means of a single pump as the battery is on duty. There is no requirement for a membrane. Tetrachloro-p-benzo-hydroquinone is oxidized to chloranil at positive electrode and the cadmium ions is reduced to cadmium and electroplated onto the negative electrode during charge. The reverse occurs during discharge. Results obtained with a small laboratory cell show that high efficiencies can be achieved with an average coulombic efficiency of 99% and energy efficiency of 82% over 100 cycles at the current density of 10 mA cm?2.  相似文献   

13.
Use of a glassy carbon electrode modified by adhered microcrystals of fullerene-C60 mediates the oxidation of cysteine in the presence of aqueous potassium-containing electrolytes. Under conditions of cyclic voltammetry, the potential for the oxidation of cysteine is lowered by approximately 100 mV and current is enhanced significantly relative to the situation prevailing when a bare glassy carbon electrode is used. Additional mediation occurs when the potential range covered includes that of C60/C60n redox couples. The sensitivity under condition of cyclic voltammetry is significantly dependent on pH, temperature and C60 dosage. Excellent analytical and/or recovery data are obtained with vitamin pill, cassamino acid (hydrolyzed casein) and for a range of beverages.  相似文献   

14.
Lability concepts are elaborated for metal complexes with soft (3D) and hard (2D) aqueous nanoparticles. In the presence of a non-equilibrium sensor, e.g. a voltammetric electrode, the notion of lability for nanoparticulate metal complexes, M-NP, reflects the ability of the M-NP to maintain equilibrium with the reduced concentration of the electroactive free M2+ in its diffusion layer. Since the metal ion binding sites are confined to the NP body, the conventional reaction layer in the form of a layer adjacent to the electrode surface is immaterial. Instead an intraparticulate reaction zone may develop at the particle/medium interface. Thus the chemodynamic features of M-NP complexes should be fundamentally different from those of molecular systems in which the reaction layer is a property of the homogeneous solution (μ?=?(D M/k a )1/2). For molecular complexes, the characteristic timescale of the electrochemical technique is crucial in the lability towards the electrode surface. In contrast, for nanoparticulate complexes it is the dynamics of the exchange of the electroactive metal ion with the surrounding medium that governs the effective lability towards the electrode surface.  相似文献   

15.
We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ∼30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy)3 2/3+/tri-n-propylamine on the floating bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH3)6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high sensitivity fluorescence-mediated electrochemical sensing coupled to self-induced redox cycling.  相似文献   

16.
Herein, a novel label-free electrochemical aptasensor based on direct immobilization of the redox probes on an electrode surface was reported. Gold electrode coated Nafion was firstly modified with redox probe-thionine (Thi) through ion exchange adsorption. Then, with the help of chemisorption and electrostatic adsorption, negatively charged nano-Au and positively charged Thi were layer-by-layer (LBL) self-assembled onto the modified electrode surface, which formed {nano-Au/Thi+}n multilayer films for improving the amount of redox probes and immobilizing thiolated thrombin aptamers (TBA). In the presence of target thrombin (TB), the TBA on the multilayer film could catch the TB onto the electrode surface, which resulted in a barrier for electro-transfer, leading to decrease of the current. The proposed method avoided the cubsome redox probe labeling process, increased the amount of redox probe and reduced the distance between the redox probe and electrode surface. Thus, the approach showed a high sensitivity and a wider linearity to TB in the range from 0.12 nM to 46 nM with a detection limit of 40 pM.  相似文献   

17.
Theζ-potentials of anionic polystyrene latex particles and Nylon fiber were measured as a function of concentration of NaCl, Na2SO4, Na3PO4 and CaCl2, and the deposition of the latex onto Nylon fiber was considered. In the range of ionic strength from 5×10?4 to 5×10?2 where the rate of deposition was measured, the increase of electrolyte concentration resulted in the slight increase due to the adsorption of negative ion in the negativeζ-potentials of the latex particles. However, the rate of deposition increased with increasing concentration of electrolyte because of the decrease due to compression of the electrical double layer in the negativeζ-potentials of Nylon fiber. This result was supported by the fact that the maximum repulsive energy between electrical double layers of a latex particle and Nylon fiber decreased, as predicted theoretically, with decreasing ratio of theζ-potential of the fiber to that of the latex particle.  相似文献   

18.
A clay-modified electrode (CME) consisting of novel colloidal silver–montmorillonite clay composite material (Ag0n–MM) has been prepared and characterized. The study on its ability to enhance the redox reactions of phenothiazine dyes reveals that the nanosize particle nature of the silver is retained in the film, as reflected from cyclic voltammograms and photogalvanic studies. The photogalvanic current observed for the dyes in this composite material shows an enhanced anodic photocurrent versus the case in ion-exchanged CMEs, where the dyes show a cathodic photocurrent. The unique behavior is explained by a suitable mechanism.  相似文献   

19.
《Electroanalysis》2004,16(8):627-632
The direct electrochemistry of catalase (Ct) was accomplished at a gold electrode modified with single‐wall carbon nanotubes (SWNTs). A pair of well‐defined redox peaks was obtained for Ct with the reduction peak potential at ?0.414 V and a peak potential separation of 32 mV at pH 5.9. Both reflectance FT‐IR spectra and the dependence of the reduction peak current on the scan rate revealed that Ct adsorbed onto the SWNT surfaces. The redox wave corresponds to the Fe(III)/Fe(II) redox center of the heme group of the Ct adsorbate. Compared to other types of carbonaceous electrode materials (e.g., graphite and carbon soot), the electron transfer rate of Ct redox reaction was greatly enhanced at the SWNT‐modified electrode. The peak current was found to increase linearly with the Ct concentration in the range of 8×10?6–8×10?5 M used for the electrode preparation and the peak potential was shown to be pH dependent. The catalytic activity of Ct adsorbates at the SWNTs appears to be retained, as the addition of H2O2 produced a characteristic catalytic redox wave. This work demonstrates that direct electrochemistry of redox‐active biomacromolecules such as metalloenzymes can be improved through the use of carbon nanotubes.  相似文献   

20.
We reported previously the superiority of electrochemical characteristics of the mechanical mixtures of micrometer LiMn2O4 spinel with multiwall carbon nanotubes (MCNT) over those of spinel compositions with natural graphite in the prototypes of the Li-ion batteries. In the presented work, we extended the investigation of the kinetic and interfacial characteristics of the spinel in the redox reaction with the Li ion. Slow-rate scan cyclic voltammetry and impedance spectroscopy were used. Carbon electroconductive fillers, their nature, and particle sizes play the key role in the efficiency of the electrochemical transformation of spinel in Li-ion batteries. Electrodes based on the composition of the spinel and MCNT show a good cycling stability and efficiency at the discharge rate of 2C. Chemical diffusion coefficients of Li ion, which were determined in spinel composite with MCNT and graphite near potentials of peak activity in deintercalation/intercalation processes, change within one order of 10?12 cm2 s?1. The value of this chemical diffusion coefficient for the composition of the spinel with MCNT and with graphite change within one order of 10?12 cm2 s?1. The data of the impedance spectroscopy shows that the resistance of surface films on the spinel (R s) is low and does not considerably differ from R s in composites of the spinel with MCNT and graphite. The investigation shows that the resistance of charge transport (R ct) through the boundary of surface film/spinel composite is dependent on the conductive filler. Value of R ct in spinel electrode decreases by the factor of thousand in the presence of carbon filler. Exchange current of spinel electrode increases from the order of 10?7 to 10?4 A cm?2 under the influence of MCNT. At the potentials of maximum activity in deintercalation processes, exchange current of spinel composite electrode with MCNT is 2.2–3.0 times more than one of the composite with graphite. Determining role of the resistance of charge transport in electrode processes of spinel is established. The value of R ct is dependent on the resistance in contacts between spinel particles and also between particles and current collectors. Contact resistance decreases under the influence of MCNT with more efficiency than under the influence of graphite EUZ-M because of small the size of its particles with high surface area of the MCNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号