首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel oil‐in‐water (O/W) emulsions are prepared which are stabilised by a cationic surfactant in combination with similarly charged alumina nanoparticles at concentrations as low as 10?5 m and 10?4 wt %, respectively. The surfactant molecules adsorb at the oil‐water interface to reduce the interfacial tension and endow droplets with charge ensuring electrical repulsion between them, whereas the charged particles are dispersed in the aqueous films between droplets retaining thick lamellae, reducing water drainage and hindering flocculation and coalescence of droplets. This stabilization mechanism is universal as it occurs with different oils (alkanes, aromatic hydrocarbons and triglycerides) and in mixtures of anionic surfactant and negatively charged nanoparticles. Further, such emulsions can be switched between stable and unstable by addition of an equimolar amount of oppositely charged surfactant which forms ion pairs with the original surfactant destroying the repulsion between droplets.  相似文献   

2.
Combining experiment with theory reveals the role of self‐assembly and complexation in metal‐ion transfer through the water–oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X‐ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long‐range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu3+–3(NO3?) ion pairs involves incorporation of the “hard” metal complex into the core of “soft” aggregates. This seeds the formation of reverse micelles that draw the water and “free” amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod‐shaped polynuclear EuIII‐containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O‐donor ligands and anions, provide improved EuIII solvation environments that help drive interfacial transfer, as is reflected by the increasing EuIII partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal‐ion coordination with nanoscale structure to reveal the free‐energy balance that drives the phase transfer of neutral metal salts.  相似文献   

3.
To improve the oil absorbency of caster oil‐based polyurethane foam, nano‐organic‐montmorillonite (OMMT) was used for the additives. The aim of this study is to evaluate the oil diffusion mechanism and dispersion uniformity of OMMT modified caster oil‐based polyurethane (MPU) using experiments and molecular dynamic simulation. Molecule movement and molecule trajectory of oil was investigated by molecular dynamic simulation and numerical simulation. According to the quantitative analyzing results, the diffusion model was put forward. The average diffusion coefficient of crude oil in 0, 1, 2 wt%, 4, and 6 wt% MPU is 2.4 × 10?4 cm2/s, 2.6 × 10?4 cm2/s, 3.0 × 10?4 cm2/s, 3.2 × 10?4 cm2/s, and 3.3 × 10?4 cm2/s, respectively. It indicated that crude oil appeared gradient in the MPU. The optimal diffusion direction of crude oil is (0, 0, 1) crystal face, and the small particles of crude oil are easy to be adsorbed. The two‐dimensional diffusion trajectory of crude oil is nonlinear. The diffusion model includes the diffusion of crude oil at the interface of oil and polyurethane, surface diffusion and pore diffusion, and pore adsorption. Furthermore, the diffusion model showed that the van der Waals force was the main reason for crude oil diffusion or adsorption. OMMT could improve the ability of oil/water separation of polyurethane.  相似文献   

4.
The 1,2‐dichloroethane (DCE)/water interface, with an anionic surfactant, dinonylnaphthalenesulfonate (DNNS?), being present in DCE, was utilized for label‐free detection of albumin. An oil/water‐type flow cell was prepared using a porous PTFE tube and dipping the tube in the DCE solution containing DNNS?. This flow cell provided a well‐defined current response linear to the albumin concentration up to 10 µM with a detection limit of 1.2 µM. The current response is due to the interfacial adsorption of albumin molecules depending on the Galvani potential difference. Possible interference from creatinine in the urine could be avoided by a conventional dialysis treatment.  相似文献   

5.
Conjugated polymers featuring tunable band gaps/positions and tailored active centers, are attractive photoelectrode materials for water splitting. However, their exploration falls far behind their inorganic counterparts. Herein, we demonstrate a molecular engineering strategy for the tailoring aromatic units of conjugated acetylenic polymers from benzene‐ to thiophene‐based. The polarized thiophene‐based monomers of conjugated acetylenic polymers can largely extend the light absorption and promote charge separation/transport. The C≡C bonds are activated for catalyzing water reduction. Using on‐surface Glaser polycondensation, as‐fabricated poly(2,5‐diethynylthieno[3,2‐b]thiophene) on commercial Cu foam exhibits a record H2‐evolution photocurrent density of 370 μA cm?2 at 0.3 V vs. reversible hydrogen electrode among current cocatalyst‐free organic photocathodes (1–100 μA cm?2). This approach to modulate the optical, charge transfer, and catalytic properties of conjugated polymers paves a critical way toward high‐activity organic photoelectrodes.  相似文献   

6.
Water around hydrophobic groups mediates hydrophobic interactions that play key roles in many chemical and biological processes. Thus, the molecular‐level elucidation of the properties of water in the vicinity of hydrophobic groups is important. We report on the structure and dynamics of water at two oppositely charged hydrophobic ion/water interfaces, that is, the tetraphenylborate‐ion (TPB?)/water and tetraphenylarsonium‐ion (TPA+)/water interfaces, which are clarified by two‐dimensional heterodyne‐detected vibrational sum‐frequency generation (2D HD‐VSFG) spectroscopy. The obtained 2D HD‐VSFG spectra of the anionic TPB? interface reveal the existence of distinct π‐hydrogen bonded OH groups in addition to the usual hydrogen‐bonded OH groups, which are hidden in the steady‐state spectrum. In contrast, 2D HD‐VSFG spectra of the cationic TPA+ interface only show the presence of usual hydrogen‐bonded OH groups. The present study demonstrates that the sign of the interfacial charge governs the structure and dynamics of water molecules that face the hydrophobic region.  相似文献   

7.
The self‐assembly of dispersed polymer‐coated ferromagnetic nanoparticles into micron‐sized one‐dimensional mesostructures at a liquid–liquid interface was reported. When polystyrene‐coated Co nanoparticles (19 nm) are driven to an oil/water interface under zero‐field conditions, long (≈ 5 μm) chain‐like assemblies spontaneously form because of dipolar associations between the ferromagnetic nanoparticles. Direct imaging of the magnetic assembly process was achieved using a recently developed platform consisting of a biphasic oil/water system in which the oil phase was flash‐cured within 1 s upon ultraviolet light exposure. The nanoparticle assemblies embedded in the crosslinked phase were then imaged using atomic force microscopy. The effects of time, temperature, and colloid concentration on the self‐assembly process of dipolar nanoparticles were then investigated. Variation of either assembly time t or temperature T was found to be an interchangeable effect in the 1D organization process. Because of the dependence of chain length on the assembly conditions, we observed striking similarities between 1D nanoparticle self‐assembly and polymerization of small molecule monomers. This is the first in‐depth study of the parameters affecting the self‐assembly of dispersed, dipolar nanoparticles into extended mesostructures in the absence of a magnetic field. © 2008 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 46: 2267–2277, 2008  相似文献   

8.
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface—whereas in bulk water the coupling is homogeneous. For strongly hydrogen‐bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near‐surface region. For weakly hydrogen‐bonded OH groups that absorb around 3500 cm?1, which are assigned to the outermost, yet hydrogen‐bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen‐bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak.  相似文献   

9.
In this work, growth of lightly crosslinked poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes and subsequent capsule formation using Pickering emulsion interface‐initiated atom transfer radical polymerization (PEII‐ATRP) were investigated. Initiator‐immobilized silica nanoparticles (2.5 initiators/nm2) assembled at the interface of paraffin oil‐in‐water emulsions and ultimately stable Pickering emulsions were formed. PEII‐ATRP was conducted in the water phase of Pickering emulsions from the part of the surfaces of initiator‐immobilized silica nanoparticles exposed to water by using copper(I) chloride/bipyridine as catalyst at 35 °C. As PHEMA has a character of lightly crosslinking when the polymerization occurs in water, novel hybrid capsules (“colloidosomes”) can be obtained and were observed by confocal laser scanning microscope (CLSM) and optical microscopy (OM). The semipermeability of the resultant hollow capsules was demonstrated by the diffusion of 1‐phenylazo‐2‐naphthol. Meanwhile, the conformation of PHEMA chains can be varied in different solvents, which affects the semipermeability of these hybrid hollow capsules. We expect these hollow capsules can be further utilized to develop microdevices for drugs or cells delivery. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1354–1367, 2009  相似文献   

10.
All‐atom molecular mechanics (MM) force field parameters are developed for the backbone of acyclic β‐amino acid using an improved version of the multiobjective evolutionary algorithm (MOEA). The MM model is benchmarked using β3‐homo‐Alanine (β3‐hAla) diamide in water with SCC‐DFTB/MM simulations as the reference. Satisfactory agreements are found between the MM and SCC‐DFTB/MM results regarding the distribution of key dihedral angles for the β3‐hAla diamide in water. The MM model is further applied to a β‐hepta‐peptide in methanol solution. The calculated NOE values and 3J coupling constants averaged over different trajectories are consistent with experimental data. By contrast, simulations using parameters directly transferred from the CHARMM22 force field for proteins lead to much worse agreement, which highlights the importance of careful parameterization for non‐natural peptides, for which the improved MOEA is particularly useful. Finally, as an initial application of the new force field parameters, the behaviors of a short random copolymer consisting of β amino acids in bulk solution and membrane/water interface are studied using a generalized Born implicit solvent model (GBSW). Results for four selected sequences show that segregation of hydrophobic and cationic groups occur easily at the membrane/solution interface for all sequences. The sequence that features alternating short blocks exhibits signs of lower stability at the interface compared to other sequences. These results confirm the hypothesis in recent experimental studies that β‐amino‐acid based random copolymers can develop a high degree of amphiphilicity without regular three‐dimensional structure. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

11.
《先进技术聚合物》2018,29(8):2237-2244
A conjugated polyelectrolyte poly(9,9‐bis(3′‐[(N,N‐dimethyl)‐N‐ethylammonium]‐propyl)‐2,7‐fluorene dibromide) (PFBr) with the feature of environmental friendliness and cheapness was successfully used in polymer solar cells (PSCs) as the cathode interfacial layer (CIL). And we successfully demonstrate that the PFBr can build interfacial dipoles at the CIL/cathode interfaces, leading to reduce cathode work functions and improve open‐circuit voltages, which decrease interfacial energy loss at the cathode. It not only improves the electron transfer efficiency but also inhibits the charge carrier recombination at the contact interface. Impedance spectra revealed that the optimal device with the smallest charge transport time constant of 2.83 microseconds was achieved under the concentration of 2 mg mL−1 of PFBr, which suggests efficient electron transport on the interface between the organic active layer and the indium tin oxide cathode. Moreover, as a consequence, the power conversion efficiency of the PSCs increases to 3.83% (with PFBr as CIL) from 1.89% (without any CIL), based on the poly(3‐hexylthiophene) and [6,6]‐phenyl C61‐butyric acid methyl ester bulk heterojunction active layer. Therefore, our observation can demonstrate PFBr is a prospective candidate as CIL for constructing low‐cost, large‐area, and flexible PSCs.  相似文献   

12.
Molecular functions depend on conformations and motions of the corresponding molecular species. An air–water interface is a suitable asymmetric field for the control of molecular conformations and motions under a small applied force. In this work, double‐paddled binuclear PtII complexes containing pyrazole rings linked by alkyl spacers were synthesized and their orientations and emission properties dynamically manipulated at the air–water interface. The complexes emerge from water with concurrent variation of interface orientation of the planes of the PtII complexes from perpendicular to parallel during mechanical compression suggesting a unique ‘submarine emission‘. Phosphorescence of the complexes is quenched at the air–water interface prior to monolayer formation with intensities subsequently rapidly increasing during monolayer compression. These results indicate that asymmetric reactions and motions might be controlled by applying mechanical force at the air–water interface.  相似文献   

13.
Bio‐inspired functional microcapsules have attracted increasing attention in many fields from physical/chemical science to artificial‐cell engineering. Although particle‐stabilised microcapsules are advantageous for their stability and functionalisation potential, versatile methods for their functionalisation are desired to expand their possibilities. This study reports a water‐in‐oil microdroplet stabilised with amphiphilic DNA origami nanoplates. By utilising DNA nanotechnology, DNA nanoplates were designed as a nanopore device for ion transportation and to stabilise the oil–water interface. Microscopic examination revealed the microcapsule formed by the accumulation of amphiphilic DNA nanoplates at the oil–water interface. Ion current measurements revealed the nanoplate pores functioned as channel to transport ions. These findings provide a general strategy for the programmable design of microcapsules to engineer artificial cells and molecular robots.  相似文献   

14.
In this paper, a TCO/a‐Si(N+)/a‐Si(i)/c‐Si(P)/Al‐BSF(P+) structure hetero‐junction (HJ) cell model is developed. With AFORS‐HET V3.0, we investigate the influence of amorphous silicon (a‐Si) emitter and amorphous silicon (a‐Si)/crystalline silicon (c‐Si) interface defects on the HJ cell performance. Through modulating a‐Si(N+) emitter doping concentration and band offset at a‐Si/c‐Si interface, a maximum width value of 103 nm inversion layer is observed in the c‐Si(P) side. For 1 Ω.cm c‐Si (P) substrate, emitter doping of over 1 × 1020 cm?3 is necessary for achieving a high‐efficiency a‐Si/c‐Si HJ cell. Furthermore, defects at a‐Si(N+)/c‐Si(P) interface severely affect the open circuit voltage (Voc) and short circuit current density (Jsc) of the cell. Meanwhile, simulation indicates that Voc is more sensitive to interface defect density (Dit) than Jsc. A thin a‐Si(i) layer between a‐Si(N+) and c‐Si(P) does induce great improvement in Voc of TCO/a‐Si(N+)/a‐Si(i)/c‐Si(P)/Al‐BSF(P+) cell. As a result, high cell efficiency of 22.27% is achieved for a‐Si(N+)/c‐Si(P) HJ Cell with optimized parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Separation of micro‐scaled water‐in‐oil droplets is important in environmental protection, bioassays, and saving functional inks. So far, bulk oil–water separation has been achieved by membrane separation and sponge absorption, but micro‐drop separation still remains a challenge. Herein we report that instead of the “plug‐and‐go” separation model, tiny water‐in‐oil droplets can be separated into pure water and oil droplets through “go‐in‐opposite ways” on curved peristome‐mimetic surfaces, in milliseconds, without energy input. More importantly, this overflow controlled method can be applied to handle oil‐in‐oil droplets with surface tension differences as low as 14.7 mN m−1 and viscous liquids with viscosities as high as hundreds centipoises, which markedly increases the range of applicable liquids for micro‐scaled separation. Furthermore, the curved peristome‐mimetic surface guides the separated drops in different directions with high efficiency.  相似文献   

16.
《化学:亚洲杂志》2018,13(19):2891-2896
Improving the activity and stability of enzymes is significant in enzyme immobilization. Here a facile approach to prepare ring‐like ZIF‐8 colloidosomes and spherical catalase‐embedded ZIF‐8 colloidosomes is developed via one‐step emulsion‐based technique at the water/butanol interface. The influence of the concentrations of ZIF‐8 nanocrystals and Pluronic F127 as well as the oil‐water ratio was investigated. Compared with in situ biomineralization, the colloidosomes prepared via the pickering emulsion method show successful encapsulation of positively charged enzymes. By using catalase as an immobilized model, the immobilized catalase exhibits high biocatalytic activity, stability and recyclability compared with free catalase.  相似文献   

17.
The self‐assembly of a novel double hydrophilic block copolymer in water without the application of external triggers is described, namely pullulan‐b‐poly(2‐ethyl‐2‐oxazoline) (Pull‐b‐PEtOx). The biomacromolecules, Pull (8–38 kg mol?1), is modified and conjugated to biocompatible PEtOx (22 kg mol?1) via modular conjugation. Moreover, the molecular weight of the Pull blocks are varied to investigate the effect of molecular weight on the self‐assembly behavior. Spherical particles with sizes between 300 and 500 nm are formed in diluted aqueous solution (0.1–1.0 wt %) as observed via dynamic light scattering and static light scattering. Additionally, cryo scanning electron microscopy and laser scanning confocal microscopy are performed to support the finding from light scattering. The block ratio study shows an optimum ratio of Pull and PEtOx of 0.4/0.6 for self‐assembly in water in the concentration range of 0.1–1.0 wt %. At higher concentrations of 20 wt %, vesicular structures with sizes above 1 µm can be observed via optical microscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3757–3766  相似文献   

18.
In order to clarify the kinetic role of oil‐soluble initiators in microemulsion polymerization, the oil‐in‐water (O/W) microemulsion polymerizations of styrene are carried out using four kinds of azo‐type oil‐soluble initiators with widely different water‐solubility. The results are compared with those observed when a water‐soluble initiator, potassium persulfate (KPS) is used. For all the oil‐soluble initiators used, the molecular weight of polymers and the average size of polymer particles do not change with the monomer conversion and the initial initiator concentration. The monomer conversion is expressed as a function of ri0.5t, where ri is the rate of radical generation in the whole reaction system and t is the reaction time. These characteristics are quite the same as those observed when KPS is used as an initiator. When the polymerizations are carried out with the rate of radical generation in the whole reaction system fixed at the same value, the rates of polymerization are almost the same for all the oil‐soluble initiators employed, irrespective of their water‐solubility, but are significantly lower (ca. 1/3) than that with KPS. Then, the following conclusions are given: (1) The radicals generated not only in the aqueous phase, but also in the micelle and polymer particle phase are almost equally effective for the polymerization. However, (2) only a small portion (ca. 1/9) of the radicals generated in both phases participate in the polymerization. (3) Bimolecular termination of a growing radical in the polymer particle with an entering radical and with a pair of radicals generated in the polymer particles is negligible, and hence, the molecular weight of polymers is determined only by chain transfer to monomer.  相似文献   

19.
Poly(vinyl amine) (PVAm)‐based amphiphilic glycopolymers were synthesized by a two‐step method, that is dextran molecules (Dex, Mw = 1500) were attached to the PVAm backbone by reacting amine groups with dextran lactone, and then, hexanoyl groups (Hex) were attached by reacting the PVAm free amine groups with N‐(hexanoyloxy)succinimide. By adjustment of the feed ratios of Dex/Hex, amphiphilic comb‐like glycopolymers with various hydrophilic and hydrophobic balances were prepared, and their structures were characterized by 1H NMR. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)‐coated coverslips by water contact angle measurements. The results show that the amphiphilic glycopolymers need about 20 mol % of dextran attachment to make an effective hydrophilic coating. In comparison with the one‐step reaction by addition of dextran lactone and alkyl succinimide simultaneously, the two‐step approach can attach Dex on PVAm as high as possible in the first step, and offers quantitative advantages in controlling the ratio of hydrophilic and hydrophobic chains along the PVAm backbone, resulting in increased water solubility for the final amphiphilic glycopolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 192–199, 2006  相似文献   

20.
Novel bi‐triphenylamine‐containing aromatic dibromide M3 , N,N‐bis(4‐bromophenyl)‐N′,N′‐dipheny‐l,4‐phenylenediamine, was successfully synthesized. The novel conjugated polymer P1 having number‐average molecular weight of 1.31 × 104 was prepared via Suzuki coupling from the dibromide M3 and 9,9‐dioctylfluorene‐2,7‐diboronic acid bis(1,3‐propanediol) ester. Polymer P1 had excellent thermal stability associated with a high glass‐transition temperature (Tg = 141 °C). The hole‐transporting and UV‐vis‐near‐infrared electrochromic properties were examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the conjugated polymer films cast onto indium‐tin oxide‐coated glass substrates exhibited two reversible oxidation redox couples at E1/2 values of 0.73 and 1.13 V versus Ag/Ag+ in acetonitrile solution. The hole mobility of the conjugated polymer P1 revealed ~10?3 cm2 V?1 s?1, which is much higher than that of other conjugated polymer systems. The observed UV‐vis‐near‐infrared absorption change in the conjugated polymer film P1 at applied potentials ranging from 0.00 to 1.23 V are fully reversible and associated with strong color changes from pale yellowish in its neutral form to green and blue in its oxidized form. Using a combination of experimental study and theoretical investigation, we proposed an oxidation mechanism based on molecular orbital theory, which explains the cyclic voltammetry experimental results well. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号