首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulk CO oxidation has been studied on platinum stepped surfaces belonging to the series Pt(S)[n(111) × (111)], using a hanging meniscus rotating disk electrode (HMRDE) configuration. The general shape of the voltammograms is not significantly affected by the presence of the steps. However, the curves shift towards negative values as the step density increases. Thus, in the positive-going scan, a linear relationship is observed for the dependence of the potential for the ignition peak vs the step density for surfaces with terraces wider than five atoms, shorter terraces deviate from this behavior. In the negative-going scan, a similar situation is observed for the potential where the current drops to zero. In this case, Pt(111) electrode also deviates from the expected behavior because of the formation of the ordered bisulfate adlayer on the electrode. The anion readsorption process is also observed by recording the HRMDE voltammograms at a high scan rate. All these results have been analyzed in light of a common mechanism, discussing the possible role of the steps in the stability and reactivity of the CO adlayer. In memoriam of Francisco C. Nart, an excellent scientist, colleague, and friend.  相似文献   

2.
We have determined, for the first time, the equilibrium CO coverage of Pt(111) electrodes at room temperature in 0.1 M H(2)SO(4) as a function of the CO partial pressure using CO-stripping cyclic voltammetry. Fourier-transform infrared (FT-IR) spectroscopy was used to confirm qualitatively the coverage values obtained.  相似文献   

3.
The CO electro-oxidation reaction was studied on platinum-modified Rh(111) electrodes in 0.5 M H2SO4 using cyclic voltammetry and chronoamperometry. The Pt-Rh(111) electrodes were generated during voltammetric cycles at 50 mV s(-1) in a 30 microM H2PtCl6 and 0.5 M H2SO4 solution. Surfaces generated by n deposition cycles were investigated (Ptn-Rh(111) with n=2, 4, 6, 8, 10, and 16). The blank cyclic voltammograms of these surfaces are characterized by a pronounced sharpening of the hydrogen/(bi)sulfate adsorption/desorption peaks, typical for Rh(111), and the appearance of contributions between 0.1 and 0.4 V, which were ascribed to hydrogen/(bi)sulfate adsorption/desorption on the deposited platinum. At higher potentials, the surface oxidation of Rh(111) is enhanced by the presence of platinum. The structure of the Pt-modified electrodes was investigated by STM imaging. At low Pt coverages (Pt2-Rh(111)), monoatomically high islands are formed, which grow three dimensionally as the number of deposition cycles increases. After eight cycles, the monolayer islands have grown in diameter and range from mono- to multiatomic height. At even higher Pt coverage (Pt16-Rh(111)), the islands grow to particles of approx. 10 nm in diameter, which are 5-6 atoms high. The CO stripping voltammetry on these surfaces is characterized by two peaks: A low-potential, structure-insensitive peak, ascribed to CO reacting at the platinum monolayer islands, whose onset is shifted 150, 250, and 100 mV negatively with respect to pure Rh(111), Pt(111), and polycrystalline Pt, respectively, indicating the enhanced CO electro-oxidation properties of the Pt overlayer system. A peak at higher potentials displays strong structure sensitivity (particle-size effect) and was ascribed to CO reacting on the islands of multiatomic height. Current-time transients recorded on the surface with the highest amount of monolayer islands (Pt4-Rh(111)) also indicate enhanced CO-oxidation kinetics. Comparison of the Pt4-Rh(111) current-time transients recorded at 0.635, 0.675, and 0.750 V versus RHE (reversible hydrogen electrode) with those of pure Rh(111) and Pt(111) shows greatly reduced reaction times. A Cottrellian decay at long times indicates surface-diffusion-limited CO oxidation on the bare Rh(111) surface, while the peak visible at short times is indicative of CO reacting at the monolayer platinum islands. The results presented here show that, as indicated by density functional theory (DFT) calculations, the CO-adlayer oxidation for this system is enhanced compared to both pure Rh and Pt.  相似文献   

4.
Surface strain plays a major role in determining the rate limiting step and catalytic activity of platinum for CO oxidation.  相似文献   

5.
Electrochemical techniques, coupled with in situ scanning tunneling microscopy, have been used to examine the mechanism of CO oxidation and the role of surface structure in promoting CO oxidation on well-ordered and disordered Pt(111) in aqueous NaOH solutions. Oxidation of CO occurs in two distinct potential regions: the prepeak (0.25-0.70 V) and the main peak (0.70 V and higher). The mechanism of reaction is Langmuir-Hinshelwood in both regions, but the OH adsorption site is different. In the prepeak, CO oxidation occurs through reaction with OH that is strongly adsorbed at defect sites. Adsorption of OH on defects at low potentials has been verified using charge displacement measurements. Not all CO can be oxidized in the prepeak, since the Pt-CO bond strength increases as the CO coverage decreases. Below theta(CO) = 0.2 monolayer, CO is too strongly bound to react with defect-bound OH. Oxidation of CO at low coverage occurs in the main peak through reaction with OH adsorbed on (111) terraces, where the Pt-OH bond is weaker than on defects. The enhanced oxidation of CO in alkaline media is attributed to the higher affinity of the Pt(111) surface for adsorption of OH at low potentials in alkaline media as compared with acidic media.  相似文献   

6.
The co-catalytic effect of W on the oxidation of CO and methanol is investigated by using differential electrochemical mass spectrometry (DEMS). DEMS reveals that CO oxidation starts at 120 mV, overlapping with W oxidation. The action of W consists in shifting the pre-peak from 450 mV (as observed on pure Pt) to 200 mV. In this shifted pre-peak only 2% of the total adsorbed CO is oxidized independently from the W coverage, as compared to 10% on pure Pt. A correlation between the surface coverage of W as determined by XPS with the W oxidation peak charge in cyclic voltammetry suggests that the oxidation is a six-electron process.Dedicated to Prof. Wolf Vielstich on the occasion of his 80th birthday in recognition of his numerous contributions to interfacial electrochemistry.  相似文献   

7.
In Parts I and II of this series it was shown that the Pt(100) and Pt(111) surfaces pretreated by flame-annealing and quenching in aqueous electrolyte contain a high density of defects such as vacancies, Pt adatoms and clusters of Pt adatoms. In this paper we show that potential cycling including scans into the oxygen region in sulfuric or perchloric acid removes most of these sites and that a limited number of cycles yield hydrogen adsorption-desorption profiles (cyclic voltammograms) that compare favorably with those published by authors who established the structure using electron diffraction techniques. Some loss of longer-range surface order as a result of the potential cycling is indicated by an increase in the width at half-height of the monolayer copper stripping peaks. The possibility of surface improvement in the absence of surface oxidation and reduction is explored by potential cycling in hydrochloric acid.  相似文献   

8.
Electrochemical scanning tunneling microscopy was used to study the structural evolution of adsorbed CO during preoxidation on Pt(111) modified with spontaneously deposited Ru. During the preoxidation process, a phase transition was observed from (2 × 2)-3CO-α to (√19 × √19)R23.4°-13CO via the transient structures (2 × 2)-3CO-β and (1 × 1)-CO. A comparison of these structural changes with those that occur on unmodified Pt(111) revealed that the presence of Ru resulted in higher populations of transient structures at lower potentials and a cathodic shift in the potential at which preoxidation is complete. These observations are discussed in terms of increased mobility of adsorbed CO in the presence of Ru.  相似文献   

9.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

10.
The variation in CO adsorption structures during the preoxidation of CO on Os-modified Pt(111) (Pt(111)/Os) was investigated using cyclic voltammetry and electrochemical scanning tunneling microscopy. The spontaneous deposition of Os on Pt(111) resulted in randomly scattered islands with a coverage range of 0.13-0.54. During preoxidation on Pt(111)/Os, a phase transition from (2 × 2)-α to (√19 × √19) via the transient structures of (2 × 2)-β and (1 × 1) took place as on unmodified Pt(111). As the amount of Os increased, however, the transient structures of (2 × 2)-β and (1 × 1) appeared at lower potentials with higher populations. When the population of the transient structures was greater than 50%, an oxidative CO stripping process took place to the structure of (√19 × √19), completing the preoxidation. These observations strongly support the idea that the presence of Os increases the mobility of adsorbed CO by electronic modification of the Pt(111) surface (electronic effect). In addition, the results obtained with Pt(111)/Os were compared with those of Pt(111)/Ru.  相似文献   

11.
The electrocatalytic oxidation of ammonia on Pt(111) and Pt(100) has been studied using voltammetry, chronoamperometry, and in situ infrared spectroscopy. The oxidative adsorption of ammonia results in the formation of NH(x) (x = 0-2) adsorbates. On Pt(111), ammonia oxidation occurs in the double-layer region and results in the formation of NH and, possibly, N adsorbates. The experimental current transients show a hyperbolic decay (t(-1)), which indicates strong lateral (repulsive) interactions between the (reacting) species. On Pt(100), the NH(2) adsorbed species is the stable intermediate of ammonia oxidation. Stabilization of the NH and NH(2) fragments on Pt(111) and Pt(100), respectively, is in an interesting agreement with recent theoretical predictions. The Pt(111) surface shows extremely low activity in ammonia oxidation to dinitrogen, thus indicating that neither NH nor N (strongly) adsorbed species are active in dinitrogen production. Neither nitrous oxide nor nitric oxide is the product of ammonia oxidation on Pt(111) at potentials up to 0.9 V, as deduced from the in situ infrared spectroscopy measurements. The Pt(100) surface is highly active in dinitrogen production. This process is characterized by a Tafel slope of 30 mV decade(-1), which is explained by a rate-determining dimerization of NH(2) fragments followed by a fast decay of the resulting surface-bound hydrazine to dinitrogen. Therefore, the high activity of the Pt(100) surface for ammonia oxidation to dinitrogen is likely to be related to its ability to stabilize the NH(2) adsorbate.  相似文献   

12.
CO adlayers on Pt(111) electrode surfaces are an important electrochemical system and of great relevance to electrocatalysis. The potential‐dependent structure and dynamics of these adlayers are complex and still controversial, especially in the CO pre‐oxidation regime. We here employ in situ high‐speed scanning tunneling microscopy for studying the surface phase behavior in CO‐saturated 0.1 m H2SO4 on the millisecond time scale. At potentials near the onset of CO pre‐oxidation local fluctuations in the (2×2)‐CO adlayer are observed, which increase towards more positive potentials. Above 0.20 V (vs. Ag/AgCl), this leads to an adlayer where COad apparently reside on every top site, but still exhibit a (2×2) superstructure modulation. We interpret this observation as a dynamic effect, caused by a small number of highly mobile point defects in the (2×2)‐CO adlayer. As shown by density functional theory calculations, the CO lattice near such defects relaxes into a local (1×1) arrangement, which can rapidly propagate across the surface. This scenario, where a static (2×2) COad sublattice coexists with a highly dynamic sublattice of partially occupied top sites, explains the pronounced COad surface mobility during electrooxidation.  相似文献   

13.
The infrared (IR) chemiluminescence spectra of CO2 were measured during the steady-state CO + O2 reaction over Pt(110) and Pt(111) surfaces. Analysis of the IR emission spectra indicates that the bending vibrational temperature (TVB), as well as the antisymmetric vibrational temperature (TVAS), was higher on Pt(110) than on Pt(111). On the Pt(110) surface, the highly excited bending vibrational mode compared to the antisymmetric vibrational mode was observed under reaction conditions at low CO coverage (theta(CO) < 0.2) or at high surface temperatures (TS > or = 700 K). This can be related to the activated complex of CO2 formation in a more bent form on the inclined (111) terraces of the Pt(110)(1 x 2) structure. On the other hand, at high CO coverage (theta(CO) > 0.2) or at low surface temperatures (TS < 650 K), TVAS was higher than TVB, which can be caused by the reconstruction of the Pt(110)(1 x 2) surface to the (1 x 1) form with high CO coverage.  相似文献   

14.
We studied the mechanism of CO oxidation on O-covered Pt(111) surfaces during CO exposure by means of time-resolved near edge x-ray absorption fine structure spectroscopy. Two distinct reaction processes were found to occur sequentially; isolated O atoms and island-periphery O atoms contribute to each process. Combination of in situ monitoring of the reaction kinetics and Monte Carlo simulations revealed that CO coadsorption plays a role of inducing the dynamic change in spatial distribution of O atoms, which switches over the two reaction paths.  相似文献   

15.
The isotopic exchange of CO adsorbed on Pt(111) was studied using polarization modulation IR reflection absorption spectroscopy (PM-IRRAS) and temperature programmed desorption. It was found that the rate constants for the exchange reaction are much higher than would be expected from previous investigations of CO adsorbed on Pt nanoparticles. The adsorption of CO on Pt(111) under elevated pressures of CO and H(2) was also studied using PM-IRRAS. It was seen that CO pressures above 1 mbar lead to a shift in the absorption peak arising from CO adsorbed on a bridge site from 1850 to 1875 cm(-1). Exposing the CO-covered Pt(111) surface to 1000 mbar H(2) did not lead to any significant desorption of CO at room temperature, whereas at 363 K H(2) exposure did lead to a significant desorption of CO, due to the increased chemical potential of H(2). In a mixture of CO and H(2) with partial pressures of 0.01 mbar and 1000 mbar, respectively, no significant effect of H(2) on the PM-IRRAS spectrum was seen at temperatures below 423 K.  相似文献   

16.
Journal of Solid State Electrochemistry - The reduction of Cu2+ ions irreversibly attached to the surface of a cyanide-modified Pt(111) electrode via non-covalent or weakly covalent interactions...  相似文献   

17.
A simple unequal-sphere packing model is applied to study the iodine (3x3) adlayer on the Pt(111) surface. By using a newly introduced parameter, defined as the average adsorbate height, three characteristic adlattices, (3x3)-sym, (3x3)-asym, and (3x3)-lin, have been selected and characterized in great detail, including the exact adatom registry. The (3x3)-sym iodine adlattice, observed in many experimental studies, appears to be, on average, the closest one to the substrate surface. A special contour plot of average adsorbate height vs X and Y positions of the (3x3) iodine unit cell indicates the existence of two local minima, which are related to preferential formation of (3x3)-sym and (3x3)-asym iodine adlattices. Our model gives good agreement with experimental findings, and explains the mechanism of preferential appearance of (3x3)-sym and (3x3)-asym structures.  相似文献   

18.
In the present paper four platinum single crystal electrodes, two basal planes of Pt(111) and Pt(110) and two stepped surfaces of Pt(332) and Pt(331), were prepared and used in the study of electro-oxidation of ethylene glycol (EG). All of these Pt single crystal electrodes belong to the [1 0] zone of crystallography, and exhibit on their surface (111) symmetry sites or certain combinations of terraces of (111) symmetry with steps of (111) symmetry type. It has been found that as a result of a favourable steric matching of surface sites the Pt(110) electrode manifested a higher activity both for EG dissociative adsorption and oxidation than that of the Pt(111) electrode. The stepped surfaces of Pt(332) and Pt(331) operated with certain combinations of characteristics of Pt(111) and Pt(110). The best electrocatalytic properties have been obtained with a Pt(331) electrode, and this is attributed both to the configuration of the atomic arrangement and to the stability of this surface.In summary, the above results show that the performance of a given Pt single crystal electrode in EG oxidation at a potential below 1.0 V may be evaluated by three factors.
1. (1) The ability to resist self-poisoning (AB) which describes the difficulty of EG dissociative adsorption on the electrode surface.
2. (2) The activity for EG oxidation (AC). In considering that the threshold potential for EG oxidation on all electrodes is at 0.3 V and that the self-poisoning is encountered in PGPS, the activity for EG oxidation may be reasonably characterized by the intensity of the peak current acquired in NGPS near 0.6 V, which corresponds to the maximum current of EG oxidation on an activated (non-poisoned) surface of the electrode.
3. (3) The stability of activity during potential cycling (SA) between 0.05 and 1.0 V, which describes the resistance to the decrease of intensity of the EG oxidation current during voltammetric cycling.
For the two basal planes studied, the AB and SA of Pt(111) are higher than those of Pt(110), but its AC is much lower than that of Pt(110). These differences are clearly related to the surface atomic arrangement of the two electrodes. As has been discussed above, the surface of Pt(111) is atomically smooth and stable during voltammetric cycling. The surface of Pt(110) presents, however, atomic steps and is reconstructed under experimental conditions, i.e. certain steric configurations are encountered on the Pt(110) surface. The high AC and the low AB may be assigned to a favourite stereographic matching during EG adsorption and oxidation on Pt(110).The two electrodes with stepped surfaces, Pt(332) and Pt(331), contain different densities of (110) sites, which are formed on the border between terrace and step, as shown in Fig. 8. The AB of these two electrodes has been observed at a moderate range between that of Pt(111) and the AB of Pt(110). With a majority of (111) sites on its surface, the electrode of Pt(332) operates at a relatively higher AC than Pt(111) does, and its SA is not as good as that of Pt(111) but is much better than the SA of a Pt(110) electrode. In all cases the highest AC and SA are obtained with a Pt(331) electrode. It may be seen from the profile of a (331) plane (shown by the cross-section of A-A in Fig. 8) that all atoms on the top of the surface participated in forming (110) sites, and the atom on the step has two functions — one is to form a (110) site with an atom located in the terrace of second layer and the other is to form a (111) site in the terrace of the same layer. It has been mentioned in the above discussions that the Pt(110) electrode keeps a higher AC due to favourite stereographic matching in EG adsorption and oxidation, but its SA is the worst, due to the instability of the surface. The highest AC and SA obtained with Pt(331) may be ascribed not only to the high density of (110) sites existing on the surface, but also to the stabilization of these (110) sites, and moreover, the synergy generated by the atomic arrangement of the Pt(331) surface may also contribute to the performance of the Pt(331) electrode.  相似文献   

19.
High-resolution x-ray photoelectron spectroscopy has been used to study the kinetics of the CO oxidation reaction on a Pt(111) surface in situ. The study focuses on the interaction of a preadsorbed p(2x2) layer of atomic oxygen with CO dosed using a supersonic molecular beam. Measurements of O 1s and C 1s spectra at 120 K show that CO adsorbs on the oxygen precovered substrate, but no reaction occurs. A maximum CO coverage of 0.23 ML (monolayer) is observed, with CO exclusively bound on on-top sites. In accordance with the literature, bridge sites are blocked by the presence of atomic oxygen. The reaction of CO with preadsorbed O to CO(2) is studied isothermally in a temperature range between 275 and 305 K. The reaction rate initially increases with CO pressure, but saturates at 9x10(-7) mbar. The data indicate that a certain amount of disordered oxygen within the p(2x2) layer acts as a starting point of the reaction and for a given temperature reacts with a higher rate than O in the well-ordered oxygen p(2x2) phase. For the reaction of CO with this ordered phase, the results confirm the assumption of a reaction mechanism, which is restricted to the edges of compact oxygen islands. The activation energy of the reaction is determined to (0.53+/-0.04) eV, with a prefactor of 4.7x10(6+/-0.7) s(-1).  相似文献   

20.
The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号