首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystallization kinetics of poly(ethylene oxide) (PEO) blocks in poly(ethylene oxide)‐block‐poly(1,4‐butadiene) (PEO‐b‐PB)/poly(1,4‐butadiene) (PB) blends were previously found to display a one‐to‐one correlation with the microdomain morphology. The distinct correlation was postulated to stem from the homogeneous nucleation‐controlled crystallization in the cylindrical and spherical PEO microdomains, where there existed a direct proportionality between the nucleation rate and the individual domain volume. This criterion was valid for confined crystallization in which the crystallization was spatially restricted within the individual domains. However, it was possibly not applicable to PEO‐b‐PB/PB, in that the melt mesophase was strongly perturbed upon crystallization. Therefore, it may be speculated that the crystal growth front developed in a given microdomain could intrude into the nearby noncrystalline domains, yielding the condition of cooperative crystallization. To establish an unambiguous model system for verifying the existence of microdomain‐tailored kinetics in confined crystallization, we crosslinked amorphous PB blocks in PEO‐b‐PB/PB with a photoinitiated crosslinking reaction to effectively suppress the cooperative crystallization. Small‐angle X‐ray scattering revealed that, in contrast to the noncrosslinked systems, the pre‐existing domain morphology in the melt was retained upon crystallization. The crystallization kinetics in the crosslinked system also exhibited a parallel transition with the morphological transformation, thereby verifying the existence of microdomain‐tailored kinetics in the confined crystallization of block copolymers. Homogeneous nucleation‐controlled crystallizations in cylindrical and spherical morphologies were demonstrated in an isothermal crystallization study in which the corresponding crystallinity developments followed a simple exponential rule not prescribed by conventional spherulitic crystallization. Despite the effective confinement imposed by the crosslinked PB phase, crystallization in the lamellar phase still proceeded through a mechanism analogous to the spherulitic crystallization of homopolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 519–529, 2002; DOI 10.1002/polb.10121  相似文献   

2.
The poly(3‐hydroxbutyrate‐co‐3‐hydroxyvalerate)/poly(ε‐caprolactone) block copolymers (PHCLs) with three different weight ratios of PCL blocks (38%, named PHCL‐38; 53%, named PHCL‐53; and 60%, named PHCL‐60) were synthesized by using PHBV with two hydroxyl end groups to initiate ring‐opening polymerization of ε‐caprolactone. During DSC cooling process, melt crystallization of PHCL‐53 at relatively high cooling rates (9, 12, and 15 °C min?1) and PHCL‐60 at all the selected cooling rates corresponded to PCL blocks so that PHCL‐53 and PHCL‐60 were used to study the nonisothermal crystallization behaviors of PCL blocks. The kinetics of PCL blocks in PHCL‐53 and PHCL‐60 under nonisothermal crystallization conditions were analyzed by Mo equation. Mo equation was successful in describing the nonisothermal crystallization kinetics of PCL blocks in PHCLs. Crystallization activation energy were estimated using Kissinger's method. The results of kinetic parameters showed that both blocks crystallized more difficultly than corresponding homopolymers. With the increase of PCL content, the crystallization rate of PCL block increased gradually. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

3.
An investigation of the cooperative effects of plasticizer (PEG) and nucleation agent (TMC‐306) on stereocomplex‐type poly(lactide acid) formation and crystallization behaviors between poly(L‐lactide acid) (PLLA) and poly(D‐lactide acid) (PDLA) was conducted. Wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC) analysis indicated that exclusive stereocomplex‐type poly(lactide acid) (sc‐PLA) crystallites without any homocrystallites poly(lactide acid) (hc‐PLA) did form by incorporation of PEG, TMC‐306, or both at a processing temperature higher than the melting temperature of sc‐PLA (around 230°C). The non‐isothermal and isothermal crystallization kinetics showed that PEG and TMC‐306 could independently accelerate the crystallization rate of sc‐PLA. The crystallization peak temperature and crystallization rate of sc‐PLA were significantly improved by the presence of PEG and TMC‐306. The influence of PEG and TMC‐306 on the morphologies of sc‐PLA was also investigated using polarized optical microscopy (POM). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, thymine and melamine were introduced as nucleating agents for poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerates) (PHBVs) and poly(3‐hydroxybutyrate) (PHB), and their effects were compared with that of boron nitride (BN). Because the overall crystallization rate of PHBVs decreases significantly with the increase in the 3‐hydroxyvalerate comonomer content, the study focused on the crystallization of PHBVs. Isothermal crystallization kinetics of the neat PHBVs and the nucleated PHBVs were studied by differential scanning calorimetry (DSC). The Avrami equation was derived and the parameters were assessed for the nucleation and crystal growth mechanism. The nucleation and crystal growth were examined using polarized optical microscopy. All nucleating agents had similar particle sizes and showed good dispersion in the polymer matrix, as revealed by scanning electron microscopy. The results indicated that BN and thymine significantly increased the overall crystallization rate for all PHBVs studied and demonstrated very similar nucleating effects. Melamine reacted with PHBVs and accelerated the thermal degradation, and hence was less effective in nucleating PHBVs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1564–1577, 2007  相似文献   

5.
6.
Reflection–absorption infrared spectroscopy was used to study the crystallization behavior of poly(ethylene terephthalate) (PET) ultrathin films. The crystallinity of ultrathin films was estimated by the fraction of trans conformers of PET. The isothermal and nonisothermal crystallization kinetics of ultrathin films with different thicknesses were investigated. The thinner PET film showed slower kinetics during isothermal crystallization than the thicker film. Moreover, the final crystallinity of films with various thicknesses were reduced with decreasing thickness. An Avrami equation was used to fit the acquired results. The Avrami exponents decreased with the film thickness. As for the nonisothermal crystallization, the cold‐crystallization starting temperature shifted to a lower temperature as the film thickness increased. The influence of the substrate on the crystallization kinetics of the films was also studied. The half‐crystallization times and final crystallinities of ultrathin films adsorbed onto a self‐assembled‐monolayer‐treated surface and an untreated substrate were clearly different, although their thickness dependence was similar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4440–4447, 2004  相似文献   

7.
The melting behavior and crystallization kinetics of poly(2‐hydroxyethoxybenzoate) (PHEBA) were investigated with differential scanning calorimetry and hot‐stage optical microscopy. The observed multiple endotherms, commonly displayed by polyesters, were influenced by the crystallization temperature. By the application of the Hoffman–Weeks method to the melting temperatures of isothermally crystallized samples, a value of 232 °C was obtained for the equilibrium melting temperature. Isothermal crystallization kinetics were analyzed according to Avrami's treatment. Values of Avrami's exponent n close to 3 were obtained, independently of the crystallization temperature, in agreement with a crystallization process originating from predetermined nuclei and characterized by three‐dimensional spherulitic growth. In fact, space‐filling banded spherulites were observed by hot‐stage optical microscopy at all crystallization temperatures explored, with the band spacing increasing with increasing crystallization temperature. The rate of crystallization became lower as the crystallization temperature increased as usual at low undercooling, with the crystallization process controlled by nucleation. The equilibrium heat of fusion was determined by differential scanning calorimetry and wide‐angle X‐ray scattering measurements. Finally, the crystal phase of PHEBA was investigated with wide‐angle X‐ray scattering, and a triclinic unit cell was hypothesized. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1354–1362, 2002  相似文献   

8.
The thermal properties, crystallization, and morphology of amphiphilic poly(D ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDLA‐b‐PDMAEMA) and poly (L ‐lactide)‐b‐poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PLLA‐b‐PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA‐b‐PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk‐shape structure and, for high molecular weight samples, the particles displayed unusual star‐like shape morphology. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1397–1409, 2011  相似文献   

9.
Control of the crystallization of conjugated polymers is of critical importance to the performance of organic electronics, such as organic photovoltaic devices, due to the effect on charge separation and transport, particularly for all‐polymer devices. The block copolymer poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF), which has matched crystallization temperatures for each block, is used to study the effects of processing history on resulting crystallization. For longer annealing times and rapid quenching to room temperature, P3DDT crystals are preferred whereas for shorter annealing times and slower quenching, PF crystals are preferred. Both crystal forms are evidenced for long annealing time and slow quenching. Additionally, for room temperature annealing in the presence of a chloroform vapor, PF crystals are found in the PF β phase with the predominant crystal peak oriented perpendicular to the thermally annealed case. These results will provide guidance for optimizing annealing strategies for future donor/acceptor block copolymer photovoltaic devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 900–906  相似文献   

10.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

11.
The crystallization behavior of a series of poly(ethylene‐co‐butylene naphthalate) (PEBN) random copolymers was studied. Wide‐angle X‐ray diffraction (WAXD) patterns showed that the crystallization of these copolymers could occur over the entire range of compositions. This resulted in the formation of poly(ethylene naphthalate) or poly(butylene naphthalate) crystals, depending on the composition of the copolymers. Sharp diffraction peaks were observed, except for 50/50 PEBN. Eutectic behavior was also observed. This showed isodimorphic cocrystallization of the PEBN copolymers. The variation of the enthalpy of fusion of the copolymers with the composition was estimated. The isothermal and nonisothermal crystallization kinetics were studied. The crystallization rates were found to decrease as the comonomer unit content increased. The tensile properties were also measured and were found to decrease as the butylene naphthalate content of the copolymers increased. For initially amorphous specimens, orientation was proved by WAXD patterns after drawing, but no crystalline reflections were observed. However, the fast crystallization of drawn specimens occurred when they were heated above the glass‐transition temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 843–860, 2004  相似文献   

12.
The nonisothermal crystallization kinetics of a luminescent conjugated polymer, poly(9,9‐dihexylfluorene‐altco‐2,5‐didecyloxy‐1,4‐phenylene) (PF6OC10) with three different molecular weights was investigated by differential scanning calorimetry under different cooling rates from the melt. With increasing molecular weight of PF6OC10, the temperature range of crystallization peak steadily became narrower and shifted to higher temperature region and the crystallization rate increased. It was found that the Ozawa method failed to describe the nonisothermal crystallization behavior of PF6OC10. Although the Avrami method did not effectively describe the nonisothermal crystallization kinetics of PF6OC10 for overall process, it was valid for describing the early stage of crystallization with an Avrami exponent n of about 3. The combined method proposed in our previous report was able to satisfactorily describe the nonisothermal crystallization behavior of PF6OC10. The crystallization activation energies determined by Kissinger, Takhor, and Augis‐Bennett models were comparable. The melting temperature of PF6OC10 increased with increasing molecular weight. For low‐molecular‐weight sample, PF6OC10 showed the characteristic of double melting phenomenon. The interval between the two melting peaks decreased with increasing molecular weight, and only one melting peak was observed for the high‐molecular‐weight sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 976–987, 2007  相似文献   

13.
In order to modify the properties of poly(butylene succinate), poly(diethylene glycol succinate) (PDGS) segment was incorporated by chain‐extension reaction of dihydroxyl‐terminated PBS and PDGS precursors using hexamethylene diisocyanate as a chain extender to form PBS‐b‐PDGS multiblock copolymers. The chemical structure and basic physical properties of the multiblock copolyesters were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and tensile testing. The results suggested that the incorporation of PDGS segments would increase the elongation at break of PBS significantly while decrease its melting temperature and crystallization temperature slightly. The isothermal crystallization kinetics studied by DSC and polarized optical microscopy indicated that the crystallization rate of the multiblock polymers decreased gradually with increasing PDGS segment content while the crystallization mechanism kept unchanged and the spherulitic growth rate of the multiblock copolymers decreased gradually with increase in PDGS content due to its diluent effect to the crystallization of PBS segments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The crystallization of poly(vinylidene fluoride) (PVDF)/poly(3‐hydroxybutyrate) (PHB) blends was studied with differential scanning calorimetry, from which the phase diagram was derived. Strong miscibility was underlined by the large negative Flory–Huggins interaction parameter (?0.25). The crystallization of the blend components differed remarkably. Whereas PVDF always crystallized in the surroundings of a homogeneous melt, PHB crystallized in a volume that was confined by the already existing PVDF spherulites, partly in their surroundings and partly inside. Under isothermal conditions, PVDF usually crystallized regularly in three dimensions with predominant quench‐induced athermal nucleation. The Avrami exponent for PVDF dendritic spherulitic growth was, however, distinctly smaller than that for compact growth, and this revealed the two‐dimensional lamellar growth inside. This deviation from ideal Avrami behavior was caused by the development of compositional inhomogeneities as PVDF crystallization proceeded, and this decelerated the kinetics. PHB crystallized three‐dimensionally with mixed thermal and athermal nucleation outside the PVDF spherulites. Inside the PVDF spherulites, PHB crystallization proceeded in a fibrillar fashion with thermal nucleation; the growth front followed the amorphous paths inside the dendritic PVDF spherulites. The crystallization was faster than that in the melt of uncrystallized PVDF. Solid PVDF acts possibly heterogeneously nucleating, accelerating PHB crystallization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 287–295, 2005  相似文献   

15.
The effect of dilithium cis‐4‐cyclohexene‐1,2‐dicarboxylate (CHDA‐Li) as a novel and efficient nucleating agent on the crystallization behaviors and spherulitic morphology of poly(lactic acid) (PLA) as well as non‐isothermal crystallization kinetics of the nucleated PLA was studied by means of differential scanning calorimetry and polarized light microscopy. The results show that CHDA‐Li serves as a good nucleating agent to accelerate the crystallization rate of PLA. The nucleation ability of CHDA‐Li is superior to octamethylenedicarboxylic dibenzoylhydrazide. With the incorporation of CHDA‐Li, the number of the spherulites increases, and the size decreases significantly. The non‐isothermal crystallization kinetics of the nucleated PLA can be well described by Jeziorny's and Mo's models. The activation energies (ΔE) of non‐isothermal crystallization were calculated by Kissinger's and Friedman's methods. The crystallization rate of PLA/0.5 wt% CHDA‐Li sample is faster than that of PLA/0.2 wt% CHDA‐Li sample, while the ΔE of the former is lower than that of the latter. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

17.
Different crystallization kinetic models (Avrami and Tobin) have been applied to study the crystallization kinetics of virgin poly(butylene terephthalate) (PBT) and filled PBT systems under isothermal experimental conditions. The experimental data have been analyzed with a nonlinear, multivariable regression program. The kinetic parameters for the isothermal crystallization have been determined. The analysis results indicate that both models satisfactorily represent the isothermal crystallization kinetics. PBT crystallizes most slowly. The presence of nanoclays or nanofibers, added as fillers, enhances the crystallization rate of PBT composites. An analysis of the kinetic data with the Avrami and Tobin models has shown little change in the crystallization exponent compared with that of virgin PBT. The crystallization rate constant decreases with a rise in the temperature for the two models. This trend has been observed for similar polyester systems reported in the literature. The dispersion of the clay layers in the PBT nanocomposites has been characterized with wide‐angle X‐ray diffraction and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1344–1353, 2007  相似文献   

18.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Poly(3‐hydroxybutyrate) (PHB)/layered double hydroxides (LDHs) nanocomposites were prepared by mixing PHB and poly(ethylene glycol) phosphonates (PEOPAs)‐modified LDH (PMLDH) in chloroform solution. Both X‐ray diffraction data and TEM micrographs of PHB/PMLDH nanocomposites indicate that the PMLDHs are randomly dispersed and exfoliated into the PHB matrix. In this study, the effect of PMLDH on the isothermal crystallization behavior of PHB was investigated using a differential scanning calorimeter (DSC) and polarized optical microscopy. Isothermal crystallization results of PHB/PMLDH nanocomposites show that the addition of 2 wt % PMLDH into PHB induced more heterogeneous nucleation in the crystallization significantly increasing the crystallization rate and reducing their activation energy. By adding more PMLDH into the PHB probably causes more steric hindrance of the diffusion of PHB, reducing the transportation ability of polymer chains during crystallization, thus increasing the activation energy. The correlation among crystallization kinetics, melting behavior and crystalline structure of PHB/PMLDH nanocomposites can also be discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3337–3347, 2006  相似文献   

20.
The crystallization kinetics of biodegradable poly(butylene succinate‐co‐adipate) (PBS/A) copolyester was investigated by using differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The Avrami and Ozawa equations were used to analyze the isothermal and nonisothermal crystallization kinetics, respectively. By using wide‐angle X‐ray diffraction (WAXD), PBS/A was identified to have the same crystal structure with that of PBS. The spherulitic growth rates of PBS/A measured in isothermal conditions are very well comparable with those measured by nonisothermal procedures (cooling rates ranged from 0.5 to 15 °C/min). The kinetic data were examined with the Hoffman–Lauritzen nucleation theory. The observed spherulites of PBS/A with different shapes and textures strongly depend on the crystallization temperatures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3231–3241, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号