首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
基于整体柱的超灵敏表面增强拉曼检测   总被引:2,自引:2,他引:0  
本文提出了一种全新的基于整体柱材料的SERS检测方法。通过将探针分子和银溶胶混合后滴加在整体柱上, 我们可以得到浓度低至10-18 mol/L的罗丹明6G(R6G)及10-16 mol/L的对巯基苯胺(PATP)的SERS信号。利用原子力显微镜(AFM)和扫描电镜(SEM)对银溶胶及整体柱材料进行了表征。通过实验结果可以初步推测, 整体柱材料的表面形态和孔结构可以促进银溶胶产生“热点”。  相似文献   

3.
Silver nanoparticles (Ag NPs) enjoy a reputation as an ultrasensitive substrate for surface‐enhanced Raman spectroscopy (SERS). However, large‐scale synthesis of Ag NPs in a controlled manner is a challenging task for a long period of time. Here, we reported a simple seed‐mediated method to synthesize Ag NPs with controllable sizes from 50 to 300 nm, which were characterized by scanning electron microscopy (SEM) and UV–Vis spectroscopy. SERS spectra of Rhodamine 6G (R6G) from the as‐prepared Ag NPs substrates indicate that the enhancement capability of Ag NPs varies with different excitation wavelengths. The Ag NPs with average sizes of ~150, ~175, and ~225 nm show the highest SERS activities for 532, 633, and 785‐nm excitation, respectively. Significantly, 150‐nm Ag NPs exhibit an enhancement factor exceeding 108 for pyridine (Py) molecules in electrochemical SERS (EC‐SERS) measurements. Furthermore, finite‐difference time‐domain (FDTD) calculation is employed to explain the size‐dependent SERS activity. Finally, the potential of the as‐prepared SERS substrates is demonstrated with the detection of malachite green. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The use of Au@SiO2 core/shell nanoparticle (NP) assemblage with highly sensitive surface‐enhanced Raman scattering (SERS) was investigated for the determination of glucose and uric acid in this study. Rhodamine 6G dye molecules were used to evaluate the SERS enhancement factor for the synthesized Au@SiO2 core/shell NPs with various silica shell thicknesses. The enhancement of SERS signal from Rhodamine 6G was found to increase with a decrease in the shell thickness. The core/shell assemblage with silica layer of 1–2 nm over a Au NP of ~36 nm showed the highest SERS signal. Our results show that the SERS technique is able to detect glucose and uric acid within wide concentration ranges, i.e. 20 ng/dL to 20 mg/dL (10−12–10−3 M) and 16.8 ng/dL to 2.9 mg/dL (10−11–1.72 × 10−4 M), respectively, with associated lower detection limits of ~20 ng/dL (~1.0 × 10−12 M) and ~16.8 ng/dL (~1.0 × 10−11 M). Our work offers a low‐cost route to the fabrication of agile sensing devices applicable to the monitoring of disease progression. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A novel miniature device for rapid ultra‐sensitive surface‐enhanced Raman scattering (SERS) detection was developed in the present study. The device was made of a syringe, a piece of filter, and a Teflon tube. Therefore, it was with advantages of simplicity, miniaturization, and easy operability. The tube was filled in advance with the glycidyl methacrylate‐ethylene dimethacrylate powder porous material which has been proved to increase the sensitivity of normal SERS dramatically, then the mixture solution containing the analyte, silver colloid, and NaCl solution passed through the porous material by the action of the syringe. SERS signals were collected from the surface of the material. Rhodamine 6G (R6G), p‐aminothiophenol (PATP), and thiabendazole (TBZ) were employed as the probe molecules in the present work. R6G at microlitre‐scale can be detected at an extremely low concentration of 10–18 mol/l, and the relative standard deviation of spot to spot is 14.16% at the intensity of the band at 609 cm−1. The concentrations of PATP and TBZ that can be detected with the method are 10−11 mol/l and 1.3 × 10−6 mol/l, respectively. This method not only has achieved the ultra‐sensitive detection of dye and pesticide but also realized the simple, rapid, and small sample quantity requirement detection, and it is of great potential use for lots of analytes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Two different black silicon nanostructured surfaces modified with thin gold layers were tested for analytical signal enhancement with Surface‐Enhanced Raman Spectroscopy (SERS). The relationship between the thicknesses of the gold layers and the analytical signal enhancement was studied. Also, effects of Ti and Ti/Pt adhesion layers underneath the gold layers on the analytical signal enhancement were tested. An enhancement factor of 7.6 × 107 with the excitation laser 785 nm was achieved for the tested analyte, Rhodamine 6G, and non‐resonance SER spectra were recorded in a 5 s acquisition mode. Such an enhancement enables to achieve a detection limit down to 2.4 pg of Rhodamine 6G on a black silicon‐based nanosurface coated with a 400‐nm‐thin layer of gold. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4‐aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS‐based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80–100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 × 104 relative to silver colloid, which might have resulted from the presence of ‘hot‐spots’ at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 × 107 by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface. SERS‐based Raman mapping technique in the form of line scanning further illustrates the good SERS activity and reproducibility on the silver clusters. Finally, 4‐mercaptopyridine (4‐Mpy) was chosen as an analyte and the lowest detected concentration was investigated by the SERS‐active silver clusters. A concentration of 1.6 × 10−10 M 4‐Mpy could be detected with the SERS‐active silver clusters, showing the great potential of the technique in practical applications of microanalysis with high sensitivity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Highly sensitive surface‐enhanced Raman scattering active substrate obtained by self‐assembly of silver nanocolloids (AgNCs) in the bilayer Langmuir–Blodgett (LB) film of stearic acid (SA) has been reported. Rhodamine 6G (R6G) has been used as the probe molecule to test the efficacy of the as prepared substrate. Gigantic enhancement factors ~1012 orders of magnitude have been estimated from the surface‐enhanced resonance Raman scattering [SER(R) S] spectrum of R6G, which proves that the as prepared substrate is superior or comparable with silver nanoparticle as dried AgNC solutions on microscopic slides. The optical properties of the as prepared substrates have been envisaged by ultraviolet‐visible absorption spectra, while their morphological features are mapped through field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) images. A correlation has been drawn between the SER(R) S efficacy and the corresponding FESEM and AFM images of the as prepared substrates. Electric field distributions around the aggregated AgNCs have been estimated with the aid of three‐dimensional finite difference time domain simulation studies. Localized surface plasmon coupling between the nanoaggregated geometries may be altered by lifting the LB film of SA at various surface pressures. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
We report on the optical characterization of plasmonic metal nanostructures representing highly ordered interconnected hemispherical gold and silver shells that can be iteratively stripped from the same embossed templates (without template degradation) made from selectively etched anodized aluminum. By performing scanning high‐resolution confocal Raman microscopy of p‐aminothiophenol and Rhodamine 6G molecules homogeneously adsorbed to samples with different radii of shell curvature, we systematically investigate the applicability of the fabricated structures for surface‐enhanced Raman spectroscopy and correlate the results with linear reflection spectroscopy. We trace the origin of strong Raman signal enhancements (average relative enhancement of up to ~120) to electromagnetic hot‐spots located in sharp grooves and crevices at hemisphere shell junctions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, we use electrochemical oxidation–reduction cycles (ORC) methods to prepare surface‐enhanced Raman scattering (SERS)‐active gold substrates modified with SiO2 nanoparticles to improve the corresponding SERS performances. Based on the modified substrates, the SERS of Rhodamine 6G (R6G) exhibits a higher intensity by 3‐fold of magnitude, as compared with that of R6G adsorbed on a SERS‐active Au substrate without the modification of SiO2 nanoparticles. Moreover, the SERS enhancement capabilities of the modified and the unmodified Au substrates are seriously destroyed at temperatures higher than 250 and 200 °C, respectively. These results indicate that the modification of SiO2 nanoparticles can improve the thermal stability of SERS‐active substrates. The aging in SERS intensity is also depressed on this modified Au substrate due to the contribution of SiO2 nanoparticles to SERS effects. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A controllable roughened silver surface with high surface‐enhanced Raman scattering (SERS) activity and high reproducibility has been developed in this study. This silver surface was prepared by silver nucleation in polyelectrolyte multilayers (PEMs) and silver‐enlarged growth. First, the small Ag nuclei were synthesized by NaBH4 in situ reduction of Ag ions on a surface of PEMs. Then the small Ag nuclei formed were effectively enlarged by using a mixture of commercially available reagents named Li Silver . The optical properties and morphologies of the silver substrates have been investigated by ultraviolet–visible (UV–vis) spectroscopy and atomic force microscopy (AFM). The UV–vis and AFM results revealed that the small Ag nuclei separately appeared on the PEMs after NaBH4 in situ reduction. The size of the enlarged Ag nanoparticles can be easily controlled with the immersing cycle in Li Silver. 4‐Mercaptopyridine (4‐MPY) and Rhodamine 6G (R6G) have been used as Raman probes to evaluate the properties of the new SERS substrates. It has been found that the enhancement factor of R6G reached ∼109 after treatment in Li Silver. Reproducibility has been investigated using the SERS signal intensity at 1094 cm−1 of 4‐MPY. Signals collected over multiple spots within the same substrate resulted in a relative standard deviation (RSD) of 6.38%, while an RSD of 10.33% was measured in signals collected from different substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs‐R6G) were assembled on glass and used as the seeds to in situ grow silver‐coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs‐R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV‐visible spectroscopy. More importantly, the obtained silver‐coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs‐R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs‐R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min. In addition, the reproducibility of SERS signal on the fabricated nanostructures is very high with the intensity error lower than 15%, which has great promise as a probe for application in bioanalysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Surface‐enhanced Raman scattering (SERS) in practical application and theoretical research mostly depends on the performance of the SERS substrate. In this study, a new SERS substrate which is based on inverted self‐assembly of Ag nanoparticles (AgNPs) on glycidyl methacrylate‐ethylene dimethacrylate (GMA‐EDMA) porous material is developed. The characterization results show the GMA‐EDMA material with intertwined pores may contribute to the distribution of the AgNPs to fabricate an ideal substrate for SERS detection. In view of the characteristics of porous material, an inverted assembly method is proposed and used in operation to avoid the adverse gravity effect which may make the AgNPs plug up the pore channel and distribute on the surface unevenly. By the inverted self‐assembly method, the AgNPs could uniformly distribute on the surface of the material stably. The prepared substrate presents ultrasensitivity and good reproducibility for SERS detection. The enhancement factor of rhodamine 6G (R6G) detection is approximately 1014 and the relative standard deviation of each characteristic peak is about 15% when the substrate is used. The substrate also shows a good performance in detecting paraquat and thymine. The ultrasensitive SERS substrate can be readily integrated into pesticide detection systems and biological sample analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
以密堆积的700 nm单分散聚苯乙烯微球为模板,采用多电流阶跃方法制备了不同深度的二维有序微/纳尺度银球腔阵列。通过扫描电子显微镜,反射紫外对球腔形貌及表面等离子体共振进行了表征,以对氨基苯硫酚及罗丹明6G为探针分子进行了表面增强拉曼光谱(SERS)的研究。结果表明,通过控制电化学沉积的条件可以实现对球腔形貌的控制。以该种球腔阵列作为SERS基底,其增强因子可达107,并具有良好的信号重现性,信号间相对标准偏差小于8%。该基底用于对罗丹明6G的定量检测,检测限可达0.1 ng·mL-1。  相似文献   

15.
There is an increasing interest in developing surface enhancement Raman spectroscopy methods for intracellular biomolecule and for in vitro protein detection that involve dye or protein–dye conjugates. In this work, we have demonstrated that protein adsorption on silver nanoparticle (AgNP) can significantly attenuate the surface‐enhanced Raman spectroscopy (SERS) signal of dye molecules in both protein/dye mixtures and protein/dye conjugates. SERS spectra of 12 protein/dye mixtures were acquired using 4 proteins [bovine serum albumin (BSA), lysozyme, trypsin, and concanavalin A] and three dyes [Rhodamine 6G, adenine, and fluorescein isothiocyanate (FITC)]. Besides the protein/dye mixtures, spectra were also obtained for the free dyes and four FITC‐conjugated proteins. While no SERS signal was observed in protein/FITC mixtures or conjugates, a significantly reduced SERS intensity (up to 3 orders of magnitude) was observed for both R6G and adenine in their respective protein mixtures. Quantitative estimation of the number of dye molecules absorbed onto AgNP implied that the degree of R6G SERS signal reduction in the R6G/BSA sample is 2 to 3 orders of magnitude higher than what could be accounted for by the difference in the amount of the absorbed dyes. This finding has significant implications for both intracellular SERS analyses and in vitro protein detection using SERS tagging strategies that rely on Raman dyes as reporter molecules. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
An analytical approach using enhanced Raman spectroscopy to record molecular vibrations and associated molecular images within nanometric apertures is presented, which can essentially rival or surpass its counterparts, i.e. fluorescence microscopy, by providing unique structure‐specific information forward to chemical identification and structure elucidation. Utilizing a precise nanolithographic technology and the following chemically electroless silver deposition procedure, we deliberately construct the large scale zero‐mode waveguide array in gold film with embossed silver nanostructures on the bottom of nanowells capable of acquiring enhanced Raman spectra with substantial sensitivity and high chemical fidelity. Two chemicals, aminothiophenol (4‐ATP) and Rhodamine 6G, respectively, are employed as molecular indicators to successfully demonstrate the capability of this analytical strategy by exhibiting high‐quality Raman spectra and 2D chemical‐specific images. With a high magnitude objective (60×), we enable to acquire Raman spectra from a single nanometric aperture and quantitatively determine a peak enhancement factor of 3.63 × 105 for ATP, while 1.25 × 106 to Rhodamine 6G, comparable with a regular nanoparticle‐based surface‐enhanced Raman spectroscopy‐active substrate. Overall, the compelling characteristics of this detection scheme highlight its privileges for interrogating the individual molecular behavior in extremely confined geometry and illustrating the chemical insights of trace components without any labeling reagent and extra sample preparation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
提出了一种基于银修饰的微腔型光纤表面增强拉曼散射(SERS)探针,采用湿法检测,将光纤SERS探针直接放入待测溶液中,以罗丹明6G(R6G)溶液为探针分子,对所制备的光纤SERS探针进行远端实验性能研究。利用氢氟酸化学腐蚀的方法制备了一种微腔型光纤结构,通过控制氢氟酸的腐蚀时间得到了一系列不同腐蚀时间、不同微腔长度的光纤结构。实验研究了光纤结构的微腔长度对光纤SERS探针性能的影响,以浓度为10-3 mol·L-1的R6G溶液为探针分子,通过不断地优化纳米银溶胶与R6G溶液的混合顺序及比例,采用裸光纤微腔结构对混合溶液进行拉曼检测,发现当混合溶液的混合顺序及比例为先后混合等体积的纳米银溶胶和R6G溶液时,此时得到的混合溶液的拉曼信号增强性能最佳。利用得到的混合溶液去寻找拉曼信号增强效果最高时光纤微腔结构的结构参数,实验结果表明,在相同的实验条件下,当光纤放入氢氟酸中腐蚀时间为5 min时,此时光纤微腔结构的拉曼信号增强效果最佳。在显微镜下测量的多组腐蚀时间为5 min的光纤,其微腔长度平均约为81 μm。对得到的光纤微腔结构,采用制备过程可控的磁控溅射技术制备了一系列银纳米薄膜/多模光纤(Ag/MMF)的复合材料。当磁控溅射时间为10 min时,获得了光纤SERS探针(Ag/MMF-10)。实验以去离子水配制了不同浓度的R6G溶液,以不同浓度的R6G溶液为探针分子,Ag/MMF-10探针的远端检测限(LOD)低至10-7 mol·L-1。该光纤SERS探针拉曼信号的再现性光谱检测中显示各个特征峰的相对标准偏差(RSD)均小于10%。同时,该光纤SERS探针对浓度为10-6 mol·L-1的R6G溶液的增强因子(AEF)可高达2.64×106。实验结果表明所制备的银修饰的光纤SERS基底具有较高的灵敏度和良好的再现性。因此,该光纤SERS探针在生物医学检测、农残化学分析等痕量检测方面有潜在的应用价值。  相似文献   

18.
In this work, we propose a new electrochemical method to prepare surface‐enhanced Raman scattering (SERS)‐active silver substrates in nitric acid solutions. Experimental results indicate that the SERS intensity of adsorbed Rhodamine 6G (R6G) can be significantly increased, as compared with that of R6G adsorbed on a SERS‐active Ag substrate prepared by an electrochemical method in a chloride‐containing solution, which was generally employed in the literature. Moreover, the SERS of R6G on the newly developed substrate (prepared in a nitric acid solution) still performs well at a high temperature of 250 °C. However, the enhancement capability of the SERS‐active substrate prepared in a chloride‐containing solution is seriously destroyed at temperatures higher than 150 °C. Further investigations indicate that the oxidation states of roughened Ag substrates prepared in nitric acid solutions under different experiment conditions have less influence on the corresponding SERS performances. Instead, different surface morphologies of roughened Ag substrates and different contents of nitrogen‐containing dopping ions on the roughened Ag substrates demonstrate significant effects on the corresponding SERS performances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
采用循环伏安法(CV), 在ITO玻璃表面一步法电沉积了花状的Au@R6G(罗丹明6G)复合纳米粒子膜, 该膜呈现很强的表面增强拉曼散射(SERS)活性, 比传统制备金膜的方法提高了一个数量级。采用扫描电子显微镜(FE-SEM), X射线衍射光谱(XRD), 拉曼光谱对复合纳米粒子进行表征。通过实验发现, 电沉积20圈时的Au@R6G样品SERS信号增强最为显著, R6G的SERS检测限可达到10-10 M。  相似文献   

20.
For the first time, the experimental and theoretical evidence for the conversion of 4‐nitrobenzenethiol (4‐NBT) to p,p′‐dimercaptoazobenzene (DMAB) in Ag and Cu sols by surface photochemistry reaction is obtained with surface‐enhanced Raman scattering (SERS) spectroscopy. The SERS spectrum of 4‐NBT in Cu sol is identical to that of DMAB produced from 4‐aminothiophenol in Ag sol as reported in recent literature, thereby providing direct spectral evidence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号