首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We utilized bulk‐synthesized nanowires (NWs) of germanium dioxide as nanoscale structures that can be coated with noble metals to allow the excitation of surface plasmons over a broad frequency range. The NWs were synthesized on substrates of silicon using gold‐catalyst‐assisted vapor–liquid–solid (VLS) growth mechanism in a simple quartz tube furnace setup. The resulting NWs have diameters of ∼100–200 nm, with lengths averaging ∼10–40 µm and randomly distributed on the substrate. The NWs are subsequently coated with thin films of gold, which provide a surface‐plasmon‐active surface. Surface‐enhanced Raman scattering (SERS) studies with near‐infrared (NIR) excitation at 785 nm show significant enhancement (average enhancement > 106) with good uniformity to detect submonolayer concentrations of 4‐methylbenzenethiol (4‐MBT), trans‐1,2‐bis(4‐pyridyl)ethylene (BPE), and 1,2‐benzendithiol (1,2‐BDT) probe molecules. We also observed an intense, broad continuum in the Raman spectrum of NWs after metal coating, which tended to diminish with the analyte monolayer formation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Raman spectroscopy based on the 1064‐nm laser excitation was suggested as a handy non‐invasive technique allowing to quickly determine sugar content in honey and similar food products. In the present study, the green 532‐nm laser radiation is explored instead as it provides higher‐quality spectra in a shorter time. The sample fluorescence was quenched by purification with activated carbon. For control mixture decomposition of Raman spectra to standard subspectra led to a typical error of the sugar content of 3%. Raman optical activity (ROA) spectra that could be measured at the shorter excitation wavelength as well provided a lower accuracy (~8%) than the Raman spectra because of instrumental sensitivity and noise limitations. The results show that Raman spectroscopy provides elegant and reliable means for fast analyses of sugar‐based food products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The laser excitation wavelength is an important parameter in obtaining Raman spectra from drugs‐of‐abuse. This article compares the effect of near infrared wavelengths, 785 nm, using both benchtop and portable instrumentation and benchtop 1064 nm on the Raman spectra of seized drugs‐of‐abuse, including cocaine hydrochloride, cocaine freebase (crack), methylenedioxymethamphetamine (‘ecstasy’), amphetamine, diamorphine (heroin) and cannabis. The significant benefit of using 1064 nm for the interrogation of this type of sample is highlighted. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
《Current Applied Physics》2015,15(3):253-260
This work presents the fabrication of large-scale tunable-plasmonic surface-enhanced Raman scattering (SERS) templates and investigates their Raman enhancement. Substrates for SERS were prepared by deposition of gold nanoparticles on a glass slide followed by their growth. A plasmon shift was observed upon growing due to the formation of elongated nanoparticles and their mutual coupling. The changes in particle size, shape and interparticle distances were indicated by SEM measurements. Surface-enhanced Raman spectra of Nile blue A at a very low concentration on top of a blocking layer were measured. The overall Raman enhancement is correlated with the number of growth steps. For excitation at 532 nm four growth steps lead to maximum enhancement. Better overlap of excitation laser and the plasmon resonances upon growing increased the enhancement until four steps while further growing decreased the enhancement. At longer wavelengths excitation (633 and 785 nm) the enhancement further increased beyond the fourth growth step. This enhancement is caused by the plasmon excitation of narrower gap sizes. The proposed procedure for the SERS substrates is simple, allows covering large surface areas and plasmon band tuning from 530 nm to the near infrared in order to increase overall Raman enhancement.  相似文献   

5.
噻菌灵农药的表面增强拉曼光谱分析   总被引:1,自引:0,他引:1  
利用表面增强拉曼光谱技术(SERS)分析噻菌灵农药的拉曼特征峰。采用微波法制备银溶胶表面增强基底,利用激光显微共焦拉曼光谱仪分别采集514.5和785 nm激发波长下的噻菌灵农药拉曼光谱,解析不同激发波长下的拉曼特征峰并进行比较。结果表明:不同激发波长下噻菌灵的拉曼峰强度和拉曼频移差异较大,514.5 nm激发波长下的782和1 012 cm-1最强,是C—H变形振动较强特征峰,而785 nm激发波长下的1 284,1 450和1 592 cm-1最强,是环振动和CN伸缩振动较强特征峰。对比分析各个激发波长下噻菌灵的SERS谱图,找到了噻菌灵农药的5个较强特征拉曼峰:782,1 012,1 284,1 450和1 592 cm-1。这些特征峰可作为食品及农产品中噻菌灵农药残留定性定量判别的依据。  相似文献   

6.
Pigmented tissues are inaccessible to Raman spectroscopy using visible laser light because of the high level of laser‐induced tissue fluorescence. The fluorescence contribution to the acquired Raman signal can be reduced by using an excitation wavelength in the near infrared range around 1000 nm. This will shift the Raman spectrum above 1100 nm, which is the principal upper detection limit for silicon‐based CCD detectors. For wavelengths above 1100 nm indium gallium arsenide detectors can be used. However, InGaAs detectors have not yet demonstrated satisfactory noise level characteristics for demanding Raman applications. We have tested and implemented for the first time a novel sensitive InGaAs imaging camera with extremely low readout noise for multichannel Raman spectroscopy in the short‐wave infrared (SWIR) region. The effective readout noise of two electrons is comparable to that of high quality CCDs and two orders of magnitude lower than that of other commercially available InGaAs detector arrays. With an in‐house built Raman system we demonstrate detection of shot‐noise limited high quality Raman spectra of pigmented samples in the high wavenumber region, whereas a more traditional excitation laser wavelength (671 nm) could not generate a useful Raman signal because of high fluorescence. Our Raman instrument makes it possible to substantially decrease fluorescence background and to obtain high quality Raman spectra from pigmented biological samples in integration times well below 20 s. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Temporal Raman scattering measurements with 488, 532 and 632 nm excitation wavelengths and normal Raman studies by varying the power (from 30 W/cm2 to 2 MW/cm2) at 488 nm were performed on silver oxide thin films prepared by pulsed‐laser deposition. Initially, silver oxide Raman spectra were observed with all three excitation wavelengths. With further increase in time and power, silver oxide photodissociated into silver nanostructures. High‐intensity spectral lines were observed at 1336 ± 25 and 1596 ± 10 cm−1 with 488 nm excitation. No spectral features were observed with 633 nm excitation. Surface‐enhanced resonance Raman scattering theory is used to explain the complex behavior in the intensity of the 1336/1596 cm−1 lines with varying power of 488 nm excitation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The use of laser beams as excitation sources for the characterization of semiconductor nanowires (NWs) is largely extended. Raman spectroscopy and photoluminescence (PL) are currently applied to the study of NWs. However, NWs are systems with poor thermal conductivity and poor heat dissipation, which result in unintentional heating under the excitation with a focused laser beam with microscopic size, as those usually used in microRaman and microPL experiments. On the other hand, the NWs have subwavelength diameter, which changes the optical absorption with respect to the absorption in bulk materials. Furthermore, the NW diameter is smaller than the laser beam spot, which means that the optical power absorbed by the NW depends on its position inside the laser beam spot. A detailed analysis of the interaction between a microscopic focused laser beam and semiconductor NWs is necessary for the understanding of the experiments involving laser beam excitation of NWs. We present in this work a numerical analysis of the thermal transport in Si NWs, where the heat source is the laser energy locally absorbed by the NW. This analysis takes account of the optical absorption, the thermal conductivity, the dimensions, diameter and length of the NWs, and the immersion medium. Both free standing and heat-sunk NWs are considered. Also, the temperature distribution in ensembles of NWs is discussed. This analysis intends to constitute a tool for the understanding of the thermal phenomena induced by laser beams in semiconductor NWs.  相似文献   

9.
Many trace chemical analyses are being transitioned from the lab to the field, among which is surface‐enhanced Raman spectroscopy. Although initial portable Raman analyzers primarily employ 785 nm laser excitation, recent studies suggest longer wavelengths, with an appropriate surface‐enhanced Raman‐active substrate, may provide equal sensitivity. Furthermore, 1550 nm excitation may provide added safety for the user, in that permanent retina damage does not occur. Here, we show that a reasonable enhancement factor can be obtained for melamine using 1550 nm laser excitation that is nearly equivalent to those obtained using 785 and 1064 nm laser excitation. We also demonstrate that a number of other chemicals of interest can be measured by 1550 nm surface‐enhanced Raman scattering, albeit only modest sensitivity is achieved because of instrument limitations, not enhancement factors. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Dynamic scanning photocurrent microscopy was applied to Sb2Se3 crystalline single nanowires (NWs) to analyze their transient photocurrent responses. These NWs exhibited switching behavior with rapid rise and decay times upon illumination by laser pulses. The estimated spectral responsivity and external quantum efficiency for a freshly‐prepared NW at a bias voltage of 0.3 V and excitation wavelength of 488 nm were ~16.9 mA/W and ~42.9%, respectively. A pyroelectric‐like current transient was observed with reduced spectral responsivity when nonpolar Sb2Se3 single‐crystalline NWs were excited by laser pulses. Because Sb2Se3 NWs were nonpyroelectric or ferroelectric, the pyroelectric‐like current could possibly be attributed to temperature dependent nonlinear space‐charge distributions. Defects produced by the external electrical bias generated and re‐distributed space charges in the NWs. As a result, the temperature dependent inhomogeneous electric field led to nonlinear expansions or contractions of the lattice (electrostriction) that can produce pyroelectric current. We obtained a lower bound of equivalent pyroelectric coefficient α ≥ 60.09 μC/m2 K from these materials by fitting the electrical transients. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

11.
Raman spectroscopy, in principle, is an excellent technique for the study of molecular species developed on metal surfaces during electrochemical investigations. However, the use of the more common laser wavelengths such as the 514.5‐nm line results in spectra of less than optimal intensity, particularly for iron oxide compounds. In the present work, near‐resonance enhancement of the Raman spectra was investigated for the iron oxide and iron oxyhydroxide compounds previously reported to be present in the passive film on iron, using a tuneable dye laser producing excitation wavelengths between 560 and 637 nm. These compounds were hematite (α‐Fe2O3), maghemite (γ‐Fe2O3), magnetite (Fe3O4), goethite (α‐FeOOH), akaganeite (β‐FeOOH), lepidocrocite (γ‐FeOOH) and feroxyhyte (δ‐FeOOH). Optimum enhancement, when compared to that with the 514.5‐nm line, was obtained for all the iron oxide and oxyhydroxide standard samples in the low wavenumber region (<1000 cm−1) using an excitation wavelength of 636.4 nm. Particularly significant enhancement was obtained for lepidocrocite, hematite and goethite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectra of the monocytes were recorded with laser excitation at 532, 785, 830, and 244 nm. The measurements of the Raman spectra of monocytes excited with visible, near‐infrared (NIR), and ultraviolet (UV) lasers lad to the following conclusions. (1) The Raman peak pattern of the monocytes can be easily distinguished from those of HeLa and yeast cells; (2) Positions of the Raman peaks of the dried cell are in coincidence with those of the monocytes in a culture cell media. However, the relative intensities of the peaks are changed: the peak centered around 1045 cm−1 is strongly intensified. (3) Raman spectra of the dead monocytes are similar to those of living cells with only one exception: the Raman peak centered around 1004 cm−1 associated with breathing mode of phenylalanine is strongly intensified. The Raman spectra of monocytes excited with 244‐nm UV laser were measured on cells in a cell culture medium. A peak centered at 1485 cm−1 dominates the UV Raman spectra of monocytes. The ratio I1574/I1613 for monocytes is found to be around 0.71. This number reflects the ratio between proteins and DNA content inside a cell and it is found to be twice as high as that of E. coli and 5 times as high as that of gram‐positive bacteria. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Natural resonance electronic Raman optical activity (ROA) is observed for the first time. Coincidently, the first example of vibrational ROA enhanced by low‐lying electronic transition is reported. These new phenomena were measured using the rare‐earth complex Eu(tfc)3 (+)‐tris[3‐trifluoroacetyl‐D ‐camphorato]europium(III), where electronic resonance occurs between the 532‐nm laser excitation and the 7F15D1 transition of the Eu3+ metal center. Electronic Raman spectra involve the Raman transitions terminating on the low‐lying electronic states of Eu(tfc)3. The observed vibrational ROA spectra are enhanced relative to typical ROA spectra by the proximity of vibrational states of Eu(tfc)3 to its low‐lying electronic states with significant magnetic‐dipole character, whereas the parent vibrational Raman spectra do not appear to be resonance‐enhanced since the 532‐nm vibrational Raman spectrum has similar relative intensities to the corresponding Raman spectrum measured with 1064‐nm laser excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this work is to illustrate the power of recently developed methods for measuring resonance Raman scattering (RRS) spectra of efficient fluorophores (using a standard continuous wave excitation and a charge‐coupled device (CCD)‐based Raman spectrometer), by applying them to a detailed study of a specific fluorophore: Nile Blue A. A combination of methods are used to measure the RRS properties of Nile Blue A in water (quantum yield (QY) of 4%) and ethanol (QY of 22%) at excitation wavelengths between 514 and 647 nm, thus covering both pre‐resonance and RRS conditions. Standard Raman measurements are used in situations where the fluorescence background is small enough to clearly observe the Raman peaks, while the recently introduced polarization‐difference RRS and continuously shifted Raman scattering are used closer to (or at) resonance. We show that these relatively straightforward methods allow us to determine the Raman cross‐sections of the most intense Raman peaks and provide an accurate measurement of their line‐width; even for broadenings as low as ∼ 4 cm − 1. Moreover, the obtained Raman excitation profiles agree well with those derived from the optical absorption by a simple optical transform model. This study demonstrates the possibility of routine RRS measurements using standard Raman spectrometers, as opposed to more complicated time‐resolved techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The photoluminescence (PL) of undoped, Si-doped, and Be-doped GaAs nanowires (NWs) grown on Si substrates by molecular beam epitaxy was investigated. PL peaks of the undoped and Be-doped NWs were observed at higher energies than the bandgap energy of GaAs bulk. According to X-ray diffraction analysis, the blue-shift is attributed to the wurtzite-rich GaAs NW structure. Impurity-related peaks were observed in the undoped NWs and the impurity was Si that diffused via interaction with the adatoms on the Si surface during the growth. A slight bandgap narrowing of the Be-doped GaAs NWs was observed from their PL spectra. The Si-doped NWs showed a very broad PL peak due to a larger density of Si-related defects originating from the heavy doping level. The dependence of the PL peaks of the NWs on temperature was also investigated.  相似文献   

16.
烧结粘土产品可以吸收水分子发生再羟基化,生成结构羟基的量与产品保存时间存在一定关系,基于该理论可以利用热重分析方法对陶器制品进行测年研究.红外与拉曼光谱技术也可以用来分析结构羟基信息,因此人们希望探索利用光谱分析方法代替热重法进行传统陶瓷无损测年分析.为了验证可行性,收集了多种典型矿物原料和可溯源的传统陶瓷样品,利用红...  相似文献   

17.
为实现表面增强拉曼散射(SERS)光谱的强信号快速检测分析,报道了通过785 nm激光诱导银纳米三角片(AgNPRs)聚集的方法。采用配体辅助化学还原法制备了AgNPRs,其边长约为80 nm,表面等离子体吸收峰出现在约774 nm处,对785 nm光产生有效吸收。在785 nm光辐照下,AgNPRs逐渐聚集,对巯基苯甲酸的SERS信号逐渐增强,其源于AgNPRs吸收的光转化为热而引起的AgNPRs聚集。其增强因子高达109。为快速获得强SERS信号,激发光功率需大于250 mW。  相似文献   

18.
光纤预共振喇曼光谱的实验研究   总被引:1,自引:0,他引:1  
里佐威  高淑琴 《光学学报》1993,13(11):99-1002
应用液芯光纤技术,提高了预共振喇曼光谱强度10^2倍以上,用10mW较长波长(514.5nm,488.nm,454.5nm)激光激发,观察到了α甲基吡啶的预共振喇曼光谱线。  相似文献   

19.
胡斌  王岱珂 《发光学报》1991,12(1):51-56
本文系统地研究了顺式高强聚乙炔的Raman和发光光谱,根据其Raman和发光光谱随激发能量的变化规律,以及分子链之间距离的改变对这种变化规律的影响,证明了聚乙炔中存在着激发态的链间弛豫,井且,这种弛豫过程随着分子链之间距离的减小而被加快.  相似文献   

20.
王文慧  张孬 《物理学报》2018,67(24):247302-247302
金属纳米结构的表面等离激元可以突破光学衍射极限,为光子器件的微型化和集成光学芯片的实现奠定基础.基于表面等离激元的各种基本光学元件已经研制出来.然而,由于金属结构的固有欧姆损耗以及向衬底的辐射损耗等,表面等离激元的传输能量损耗较大,极大地制约了其在纳米光子器件和回路中的应用.研究能量损耗的影响因素以及如何有效降低能量损耗对未来光子器件的实际应用具有重要意义.本文从纳米线表面等离激元的基本模式出发,介绍了它在不同条件下的场分布和传输特性,在此基础上着重讨论纳米线表面等离激元传输损耗的影响因素和测量方法以及目前常用的降低传输损耗的思路.最后给出总结以及如何进一步降低能量损耗方法的展望.表面等离激元能量损耗的相关研究对于纳米光子器件的设计和集成光子回路的构建有着重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号