首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tip‐enhanced Raman scattering (TERS) spectroscopy is a promising technique for nanoscale chemical analysis. However, there are several challenges preventing widespread application of this technology, including reproducible fabrication of efficient TERS probes. These problems reflect a lack of clear understanding of the origins of, and the parameters influencing TERS. It is believed that the coating characteristics at the apex of the tip have a major effect on the near‐field optical enhancement and thus the TERS activity of a metalized probe. Here we show that the aspect ratio of the tip can play a significant role in the efficiency of TERS probes. We argue that the electrostatic field arising from the lightning‐rod effect has a substantial role in the observed TERS effect. This argument is supported by ‘edge‐enhanced Raman scattering’ which is shown for a noble metal film. Furthermore, it is reported that an associated tip‐surface‐enhanced Raman scattering effect can be achieved by using a TERS‐inactive metalized probe on a surface‐enhanced Raman spectroscopy‐inactive roughened surface. This observation can be explained by an interparticle enhancement of the electromagnetic field. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
We report on the optical characterization of plasmonic metal nanostructures representing highly ordered interconnected hemispherical gold and silver shells that can be iteratively stripped from the same embossed templates (without template degradation) made from selectively etched anodized aluminum. By performing scanning high‐resolution confocal Raman microscopy of p‐aminothiophenol and Rhodamine 6G molecules homogeneously adsorbed to samples with different radii of shell curvature, we systematically investigate the applicability of the fabricated structures for surface‐enhanced Raman spectroscopy and correlate the results with linear reflection spectroscopy. We trace the origin of strong Raman signal enhancements (average relative enhancement of up to ~120) to electromagnetic hot‐spots located in sharp grooves and crevices at hemisphere shell junctions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Understanding the role of defects in graphene is the key to tailoring the properties of graphene and promoting the development of graphene‐based devices. Defects can affect the electronic properties of a device while also offering a means by which to functionalize the local properties. Using tip‐enhanced Raman spectroscopy (TERS), heightened defect sensitivity was demonstrated on graphene edges, folds, and overlapping regions. Measurements confirm that TERS can provide simultaneous structural and spectral information on a localized scale, hence offering defect characterization on a scale that is not obtainable using conventional Raman spectroscopy. This study observed preferential enhancement of the D band signal on multilayered graphene and ultrathin graphite; in addition, other key defect signatures were also enhanced and detected. We present our findings in relation to theoretical predictions of graphene defect signatures and an analysis of the sensitivity of TERS in measuring two‐dimensional structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
We have successfully improved the reproducibility of tip‐enhancement effect on metallized silicon cantilever tips for characterization of carbon nanotubes. Plasmon resonance tuning relative to an excitation wavelength is crucial for efficient tip‐enhancement, which is accomplished by thermal oxidization and subsequent metallization of commercial silicon tips. Because of the change of the refractive index of the tip from silicon to silicon dioxide, the plasmon resonance of the silver‐coated tip is blue‐shifted showing an enormous enhancement at 532 nm excitation. Highly reproducible tips exhibit an enhancement factor of >100 with a 100% yield. Because the tips are fabricated from commercially available silicon cantilever tips in a simple and robust way, our approach provides an important step of ‘tip‐enhanced Raman spectroscopy for everyone’. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We report for the first time the tip‐enhancement of resonance Raman scattering using deep ultraviolet (DUV) excitation wavelength. The tip‐enhancement was successfully demonstrated with an aluminum‐coated silicon tip that acts as a plasmonic material in DUV wavelengths. Both the crystal violet and adenine molecules, which were used as test samples, show electronic resonance at the 266‐nm excitation used in the experiments. With results demonstrated here, molecular analysis and imaging with nanoscale spatial resolution in DUV resonance Raman spectroscopy can be realized using the tip‐enhancement effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We demonstrate tip‐heating‐assisted enhanced Raman spectroscopy to investigate the temperature dependence of the carbon nanotube G‐band with nanoscale resolution. The controllable and nanoscale heat generated at the tip apex was used to thermally perturb and characterize a small volume in a carbon nanotube sample that is precisely positioned underneath the tip. The dependence of tip enhancement with temperature was also experimentally examined, which is in good agreement with the enhancement calculated from the electromagnetic model of isolated spheroids. The technique presented may open up opportunities in the study of controlled heat‐assisted biochemical reactions and physical transformations of nanostructures. It can also be used for thermal characterization of various materials requiring site‐selective and controllable nanoscale heat source and could enable the realization of new photothermal devices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Electromagnetic coupling between localised plasmons on metal nanoparticles and the strong localised fields on a micro‐structured surface is demonstrated as a means to increase the enhancement factor in surface‐enhanced Raman scattering (SERS) spectroscopy. Au nanoparticles of diameter 20 nm were deposited on a micro‐structured Au surface consisting of a periodic array of square‐based pyramidal pits (Klarite). The spectra of 4‐aminothiophenol (4‐ATP) were compared before and after deposition of Au nanoparticles on the micro‐structured surface. The addition of Au nanoparticles is shown to provide significantly higher signal intensities, with improvements of the order of ∼103 per molecule compared with spectra obtained from the micro‐structured substrate alone. This hybrid approach offers promise for combining nanoparticles with micro‐ and nano‐structured surfaces in order to design SERS substrates with higher sensitivities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
单壁碳纳米管束针尖增强近场拉曼光谱探测实验研究   总被引:2,自引:0,他引:2  
针尖增强近场拉曼光谱术是最近发展起来的光谱技术。金属探针在获得样品纳米局域表面形貌的同时,受激光激发,在针尖附近产生增强电磁场,得到与形貌位置精确对应的针尖增强局域拉曼光谱,形貌和光谱的结合实现了纳米局域的光谱指认。文章建立了一套针尖增强近场拉曼光谱测量装置,并用此装置对电弧法合成的单壁碳纳米管进行了近场拉曼光谱探测。测量了直径为100 nm单壁碳纳米管束的针尖增强拉曼光谱,进一步得到至多3根单壁碳纳米管的近场拉曼光谱,实现了超衍射分辨光谱探测。通过与远场拉曼光谱比较发现,针尖增强近场拉曼光谱的增强因子大于230倍。实验证明,同时具有超衍射空间分辨和拉曼光谱信号增强能力的针尖增强近场拉曼光谱术将是纳米材料和纳米结构表征的一种重要方法。  相似文献   

9.
In this work, a non‐covalent interaction of iron and metal‐free meso‐tetra (4‐sulfonatophenyl) porphines (FeTPPS and TPPS, respectively) with high‐quality single‐layer graphene is studied by Raman spectroscopy. Such a kind of graphene functionalization is promising for a development of novel optoelectronic devices and sensors. Our results show that the central metal atom of porphyrin macrocycle, iron particularly, plays an important role in the integrity of FeTPPS on graphene surface; however, the predicted Raman enhancement is not significant. The interaction of metal‐free TPPS with graphene leads to the deprotonation of TPPS molecules and higher Raman enhancement values. Moreover, initially deprotonated TPPS solutions after the adsorption onto the graphene surface demonstrate the appearance of new Raman bands and significantly enhanced Raman signals. We propose that a strong interaction between deprotonated TPPS and graphene is realized through pyrrole and desulfonated phenyl rings of closely located planar TPPS molecules on the graphene surface. The results show that both the protonation of porphyrin macrocycle and the existence of central metal atom are crucial for a formation of nanocomposites with defined electronic properties. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Signal enhancement observed in surface‐enhanced Raman spectroscopy (SERS) is attributable to the presence of noble‐metal nanostructures on substrate surfaces. The rational development of SERS‐active substrates depends critically on the homogeneity and intensity of surface plasmon resonances, properties that are strongly dependent on both the morphology and dielectric properties of the metals and composite materials making up the SERS substrates. Enhancement can be controlled by the shape, size, and spacing of metallic nanoparticles. Previous studies in our group have shown that arrays of elliptical nanodiscs have promising geometries for this purpose. Using electron beam lithography (EBL), we fabricate close‐packed arrays of these discs with lateral dimensions ranging from 300:50 to 300:300 nm (long axis : short axis). The arrays are composed of a negative photoresist that, once the lithography process is complete, are coated with a noble metal through physical vapor deposition (PVD). In this work, optimum thickness and deposition rate of noble metal are determined for these substrates. The lithographically produced nanopatterns are studied by Raman spectroscopy to examine the effect of altering the elliptical aspect ratio on SERS activity, while scanning electron microscopy (SEM) is used to examine pattern surfaces post lithographic development and post noble‐metal deposition. Atomic force microscopy (AFM) is used to inspect the roughness of substrate surfaces. Reproducibility between different arrays of the same pattern ranges from 12 to 28%. Homogeneity of our uniform‐morphology EBL/PVD‐fabricated substrates is examined and compared to our random‐morphology polymer nanocomposite substrates. Using rhodamine 6G as an analyte, an increase in SERS signal is noted as the aspect ratio of ellipses goes from 6:1 to 6:6. Our experimental data, in terms of trends in SERS activity, correlate with trends in field enhancements calculated using a simple electrostatic model and with the magnitude of the broad red‐shifted spectral continuum observed for the substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
We present a means of controlling the stoichiometry of titanium nitride (TiN) coatings on probes for tip‐enhanced Raman spectroscopy measurements made using sputtering so that outstanding enhancements can be obtained. This provides a more robust alternative to gold‐coated tips that also has potential for tuning the plasmon resonance and working in new environments. Proof of concept measurements on poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) thin films demonstrate increases in the observed intensity with contrast values up to 3.1. TiN is mechanically, chemically, and thermally robust. When deposited under appropriate conditions it has optical properties, including a plasmon resonance, very similar to those of gold. However, the spontaneous formation of a surface TiNxOy layer with relatively high values of y has prevented attaining enhancements in tip‐enhanced Raman spectroscopy beyond that provided by the lightning rod effect. Depositing a thin layer of aluminum to form a passivating Al2O3 layer over the TiN plasmonic structure allows the stoichiometry achieved in the vacuum deposition to be maintained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
We report the surface‐enhanced Raman scattering (SERS) effect from the apex of single‐crystalline Ag nanowires (NWs). We also fabricated tip‐enhanced Raman spectroscopy (TERS) tips by attaching individual Ag NWs to W wires by using the alternating current dielectrophoresis (AC‐DEP) method. The single‐crystalline Ag NW tips could overcome many of the shortcomings of conventional TERS tips. Most importantly, the results obtained from TERS using single‐crystalline metal NWs are very reproducible, and the tips are also reusable. This development represents a significant progress in making TERS a reliable optical characterization technique with nanometer spatial resolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We investigate the high performance of an apertureless near‐field probe consisting of a tapered metal tip with periodic shallow surface grooves. The spontaneous emission of a single emitter near the apex is systematically analyzed for side‐illumination tip enhanced spectroscopy scheme. In contrast to a conventional bare tapered tip, the corrugated probe not only strongly enhances the local excitation field, but also modulates the emission directivity, leading to high collection efficiency and signal‐to‐noise ratio. Specifically, we propose that an asymmetric tip enhanced spectroscopy probe containing two different length nanorods at the apex realizes unidirectional emissions. The radiation pattern is sensitive to the emission wavelengths and the emitter positions, which can increase the signal‐to‐noise ratio through suppression of the undesired signal. The proposed asymmetrical corrugated probe possesses a wide range of potential applications, including increasing the detection efficiency of tip enhanced spectroscopy at the single molecule level. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Silver particles with different degrees of aggregation were synthesized through a sodium dodecyl sulfate‐assisted one‐pot reaction in an aqueous medium. The products were characterized by transmission electron microscopy, scanning electron microscopy and UV‐visible spectroscopy. The results showed that the degree of aggregation of the Ag nanoparticles could be tuned by changing the reaction parameters, such as the reaction temperature and time. A possible formation process of the Ag aggregate is proposed on the basis of a series of experimental results. Moreover, the surface‐enhanced Raman scattering (SERS) effect of the Ag aggregates was evaluated by using rhodamine 6G as a Raman probe molecule. It was demonstrated that the SERS enhancement ability is related to the degree of aggregation of Ag particles, and a high SERS signal can be observed by selecting Ag nanoparticles with the proper degree of aggregation as substrates. Moreover, the aggregates showed good reproducibility and stability to SERS from organic molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Surface‐enhanced Raman scattering (SERS) on silver and gold colloid gels formed by a low molecular weight organic gelator, bis‐(S‐phenylalanine) oxalyl amide, was obtained. Strong Raman signals dominate in the SERS spectra of hydrogels containing silver nanoparticles prepared by citrate and borohydride reduction methods, whereas broad bands of low intensity are detected in the spectra of gold colloid gels. Resemblance between Raman spectrum of the crystalline substance and the SERS spectra of the silver nanoparticle–hydrogel composites implies the electromagnetic nature of the signal enhancement. A change in Raman intensity of the benzene and amide II bands caused by an increase in temperature and concentration indicates that the gelling molecules are strongly attached through the benzene moieties to the metal nanoparticles while participating in gel formation by intermolecular hydrogen bonding between the adjacent oxalyl amide groups. Transmission electron microscopy reveals a dense gel structure in the close vicinity of the enhancing metal particles for both silver colloid gels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A method to stabilize silver surface‐enhanced Raman spectroscopy (SERS) substrates for in situ, high‐temperature applications is demonstrated. Silver island films grown by thermal evaporation were coated with a thin layer (from 2.5 to 5 nm) of alumina by atomic layer deposition (ALD), which protects and stabilizes the SERS‐active substrate without eliminating the Raman enhancement. The temporal stability of the alumina‐coated silver island films was examined by measurement of the Raman intensity of rhodamine 6G molecules deposited onto bare and alumina‐coated silver substrates over the course of 34 days. The coated substrates showed almost no change in SERS enhancement, while the uncoated substrates exhibited a significant decrease in Raman intensity. To demonstrate the feasibility of the alumina‐coated silver substrate as a probe of adsorbates and reactions at elevated temperatures, an in situ SERS measurement of calcium nitrate tetrahydrate on bare and alumina‐coated silver was performed at temperatures ranging from 25 to 400 °C. ALD deposition of an ultrathin alumina layer significantly improved the thermal stability of the SERS substrate, thus enabling in situ detection of the dehydration of the calcium nitrate tetrahydrate at an elevated temperature. Despite some loss of Raman signal, the coated substrate exhibited greater thermal stability compared to the uncoated substrate. These experiments show that ALD can be used to synthesize stable SERS substrates capable of measuring adsorbates and processes at high temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Silicon nanotip arrays exhibit a wide variety of interesting optical and electronic properties associated with their dimensionality. We here investigate the effect of size‐induced changes on phonon localization and explain the enhanced Raman response. The occurrence of normally forbidden transitions in the photoluminescence spectra provides evidence for the predicted localization effect. Spatially resolved Raman spectroscopy reveals a continuous change of the silicon Raman peak position and peak width along the nanotip that is attributed to a smooth change between bulk properties at the base to size‐induced phonon confinement in the apex of the nanotip. This approach allows to exclude heating effects that normally overwhelm the phonon confinement signature. The Raman spectra are in excellent agreement with the spatial correlation model and the extracted correlation length is comparable to the tip dimensions. The observed phonon confinement coincides with an enhancement of the Raman scattering efficiency at the tip apex and results in a 40‐fold increase of the sample's Raman intensity compared with bulk silicon. These results provide a step toward the integration of Si based optoelectronic devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Raman spectroscopic investigation on weak scatterers such as metals is a challenging scientific problem. Technologically important actinide metals such as uranium and plutonium have not been investigated using Raman spectroscopy possibly due to poor signal intensities. We report the first Raman spectrum of uranium metal using a surface‐enhanced Raman scattering‐like geometry where a thin gold overlayer is deposited on uranium. Raman spectra are detected from the pits and scratches on the sample and not from the smooth polished surface. The 514.5‐ and 785‐nm laser excitations resulted in the Raman spectra of uranium metal whereas 325‐nm excitation did not give rise to such spectra. Temperature dependence of the B3g mode at 126 cm−1 is also investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
表面增强拉曼散射光谱(SERS)已用于环境监测、生物医药、食品卫生等领域,而高活性SERS基底是表面增强拉曼散射光谱技术应用的关键。TiN作为新型等离子材料具有较强的SERS性能,同时化学稳定性及生物相容性较好,但其SERS性能不如贵金属金强。该研究采用氨气还原氮化法和电化学沉积法,在TiN薄膜表面沉积贵金属Au纳米颗粒制备出Au/TiN复合薄膜。在Au/TiN复合薄膜中单质Au和TiN两种物相共存;随着电化学沉积时间延长,TiN薄膜表面单质金纳米颗粒数量逐渐增多,金纳米颗粒尺寸增大,颗粒间距减小。由于金与TiN两者的本征表面等离子共振耦合作用,Au/TiN复合薄膜的共振吸收峰发生了偏移。利用罗丹明6G为拉曼探针分子,对Au/TiN复合薄膜进行SERS性能分析,发现Au/TiN复合薄膜上的R6G探针分子的拉曼峰信号强度随沉积时间延长呈现先增大后减小的规律;当电化学沉积时间为5 min时,R6G拉曼信号峰较高,复合薄膜样品的SERS活性最大。将Au/TiN复合薄膜和Au薄膜分别浸泡在10-3,10-5,10-7,10-8及10-9 mol·L-1 R6G溶液5 min,进行检测限分析,发现Au/TiN复合薄膜检测极限达10-8 mol·L-1,增强因子达到8.82×105,与Au薄膜和TiN薄膜相比,Au/TiN复合薄膜上对R6G探针分子SERS活性最高。这得益于Au/TiN复合膜中表面等离子体产生的耦合效应,使得局域电磁场强度增强,从而引起R6G探针分子拉曼信号增强。通过2D-FDTD模拟电场分布发现Au/TiN,Au及TiN薄膜具有电场增强作用,其中Au/TiN复合薄膜的增强作用尤为显著,这也证实了氮化钛与金纳米颗粒之间存在耦合效应。另外发现TiN与Au之间可能存在电荷转移,促进了4-氨基苯硫酚氧化反应,进而证实了TiN与Au薄膜的协同作用。此外,Au/TiN复合薄膜均匀性较好,相对平均偏差仅为7.58%。由此可见,采用电化学沉积制备的Au/TiN复合薄膜具有作为SERS基底材料的应用潜力。  相似文献   

20.
We present a study of resonant optical properties of gold‐protected silver nanoisland films. Silver nanoislands were grown on a glass substrate using out‐diffusion technique, the growth was followed by the deposition of nanometer‐thick gold coatings. Scanning electron microscopy and optical spectroscopy were used to characterize morphology and extinction spectra of the grown combined silver–gold nanostructures. Micro Raman spectroscopy of the combined nanoislands has demonstrated their signal enhancement factor exceeding that one of the initial silver nanoislands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号