首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The structure of orthorhombic rare earth titanates of La2TiO5 and Nd2TiO5, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a×b×2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO5 polyhedra remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.  相似文献   

2.
The Fe0.45S0.55-Ni0.66S0.34 section of the Fe-Ni-S phase diagram was constructed using thermal analysis, microscopy, X-ray powder diffraction, and electron probe microanalysis data obtained for the samples prepared by isothermal annealing and thermal analysis and by directional solidification of Fe0.2665Ni0.2665S0.467 melt under quasi-equilibrium conditions. Four invariant phase reactions are found in this section. The solid-phase mechanism of pentlandite formation is verified. Original Russian Text ? V.I. Kosyakov, E.F. Sinyakova, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 7, pp. 1212–1219.  相似文献   

3.
The partial pressure of oxygen in equilibrium with niobium oxides was determined from thermogravimetric gas-equilibrium measurements over the range 1000–1100°C. Hysteresis phenomena were shown, and a method has been perfected to eliminate these phenomena. Two nonstoichiometric stable phases, NbO2.42 and NbO2.47, were found. A new partial phase diagram is proposed.  相似文献   

4.
A partial pseudoternary phase diagram of the LaO1.5-BaO-ScO1.5 system was established at 1600 °C. According to the phase diagram, the solubility of barium into the cubic perovskite phase (LaScO3) at 1600 °C is 0.24 in a mole fraction of barium oxide (XBaO) on the composition line where the mole fraction of scandium oxide is 0.50. Another cubic perovskite phase (BaZrO3) in the BaO-ZrO2-ScO1.5 system is also known. We investigated the phase relationships between the two cubic perovskites in the pseudoquaternary phase diagram of the LaO1.5-BaO-ScO1.5-ZrO2 system. As a result, we found the existence of a wide solid solution region between the cubic perovskites at 1600 °C. The region was determined by X-ray diffraction (XRD) analysis and energy dispersive X-ray (EDX) microanalysis of samples with various compositions, and established the partial pseudoquaternary phase diagram.  相似文献   

5.
A pure sample of a hexavalent iron compound, BaFeO4, was decomposed at temperatures below 1200°C at oxygen pressures from 0.2 to 1500 atm. In addition to the already known BaFeOx (2.5 ≦ x < 3.0) phases with hexagonal and triclinic symmetry, two new phases were obtained as decomposition products at low temperatures. One of the new phases, with composition BaFeO2.61 – 2.71, has tetragonal symmetry; lattice constants are a0 = 8.54 Å, c0 = 7.29 Å. The phase is antiferromagnetic with Néel temperature estimated to be 225 ± 10 K. Two internal fields observed on its Mössbauer spectra correspond to Fe3+ and Fe4+. In the other new phase, with composition BaFeO2.5, all Fe3+ ions had the same hyperfine field; it too is antiferromagnetic with a Néel temperature of 893 ± 10 K. Mössbauer data on the hexagonal phase coincided with earlier results of Gallagher, MacChesney, and Buchanan [J. Chem. Phys.43, 516 (1965)]. In the triclinic-I BaFeO2.50 phase, internal magnetic fields were observed at room temperature, and it was supposed that there were four kinds of Fe3+ sites. The phase diagram of BaFeOx system was determined as functions of temperature and oxygen pressure.  相似文献   

6.
A calculation, in the regular solution approximation, of the solidification diagram for some Sc2O3Ln2O3 (Ln: Ho, …, Lu, and Y) systems is presented. Experimental and calculated results obtained for these systems are compared.  相似文献   

7.
Using diamond anvil cell technique with angle dispersive X-ray diffraction (ADXD) of synchrotron radiation and electrical conductivity measurements, we have observed that CuO2 chain compound Li2CuO2 transforms from ambient orthorhombic symmetry into a new phase at above 5.4 GPa and room temperature. The new phase was found to be of monoclinic structure with an increased oxygen coordination number of Cu2+ from four at ambient to six at high pressure that provides a structural basis of the evolution of principle physical properties. The high pressure phase of Li2CuO2 is discussed in line with the first principle calculations.  相似文献   

8.
Differential thermal analysis coupled to temperature-controlled diffraction have given evidence of a topological metastability phenomenon in an extended compositional range of the La2−xNdxMo2O9 solid solution. A metastable-stable phase diagram is proposed for this series of LAMOX-type fast oxide-ion conductors. In the Nd range 0<x?0.35, a freezing of the oxygen/vacancy disorder of the β-phase at ambient temperature can be achieved through a splat-quenching to water-ice mixture or/and shaping/sintering into pellet. In the intermediate 0.4?x?1.2 range, the amount of β-metastable phase grows upon substitution for powders. The negative impact of β-metastable to α phase transition on conductivity tends to disappear through the partial stabilization of the β phase by shaping/sintering.  相似文献   

9.
The phase diagram of the SrCo0.8Fe0.2O3−δ compound has been determined at high temperatures (823?T?1223 K) and in the oxygen partial pressure range (10−5?pO2?1 atm) by thermogravimetric measurements of the equilibrium pO2, high temperature X-ray diffraction and electrical conductivity measurements. The cubic perovskite phase SrCo0.8Fe0.2O3−δ is stable in a broad range of oxygen content, while the orthorhombic brownmillerite phase SrCo0.8Fe0.2O2.5 stabilizes within a small range around 3−δ=2.5 at temperatures below 1073 K. Equilibrium pO2 measurements under isothermal conditions show chemical hysteresis at the perovskite to brownmillerite transition. The hysteresis loop decreases its amplitude in pO2 with decreasing temperature. This behavior is discussed considering the evolution from coherent intergrowth interfaces with elastic strain energy to incoherent interfaces without elastic strain energy as T decreases. The thermodynamic quantities hO2oxide and sO2oxide for the perovskite phase decrease when increasing the oxygen defects concentration. The electrical conductivity (σ) of the cubic phase exhibits a thermally activated behavior at high temperature. The variation of σ with the oxygen content is non-linear and the activation energy varies from 0.4 to 0.28 eV as the oxygen content increases from 2.4 to 2.6. These results are interpreted in the frame of the small polaron model.  相似文献   

10.
The relative stability of Bi2Mo6 polymorphs was studied by isothermal heating at 250–635°C, and 100–1500 kg/cm2. The results obtained follow: (1) A reversible transition was observed between two stable phases at low (L) and high (H) temperatures, γ(L)-Bi2MoO6 with the koechlinite structure and γ(H)-Bi2MoO6 (=γ′ labeled by Elman). (2) A pressure-temperature phase diagram of Bi2MoO6 was drawn and it showed that the γ(L)-form was more stable than the γ(H)-form in the low-temperature and high-pressure region. (3) The transition temperature of γ(L) ? γ(H) under atmospheric pressure was estimated to be about 570°C by extrapolation of the phase boundary. (4) A third modification, γ″-Bi2MoO6 (a metastable phase), was not detected in the experiments. A free-energy-temperature diagram for the three modifications, γ(L), γ(H), and γ″, is proposed on the basis of the present experimental results and previously published data.  相似文献   

11.
The structure and phase variation of Ca5Si3 upon hydrogenation were systematically investigated using combined neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), and first-principles calculations. The hydrogen absorption equilibrium was first attained with formation of Ca5Si3H(D)0.53 (I4/mcm) with H exclusively located in Ca4-tetrahedral sites. More hydrogen absorbed into the system under higher pressure leads to dissociations into CaH2 (an amorphous hydride at higher pressures) and CaSi. The hydrogen-induced formation of an amorphous phase under higher pressures is very unusual in Cr5B3-type compounds and the observed formation of CaH2 upon hydrogen absorption confirmed the proposed composition equilibrium between A5Tt3 (A = Ca, Sr; Tt = Si, Ge, Sn) and AH2.  相似文献   

12.
This paper reports equilibrium-phase data for the FeMnTiO system at oxygen fugacities between 10?18.2 and 10?10.0 atm and at temperatures between 1249 and 1514K. An equilibration-and-quench method was used, and the oxygen fugacities were controlled with mixtures of hydrogen and carbon dioxide. The phase relations are presented on a log fO2 vs 1T diagram and are discussed interms of the phase relations in the two systems FeTiO and MnTiO.  相似文献   

13.
The compositions in the YBa2−xLaxCu3O7−δ (0x0.2) system were prepared by the solid state reaction, employing a novel high-temperature oxygen sintering route. The modified sintering route yields dense slab like microstructures with large grains. The decomposition (incongruent melting) temperature of the YBa2Cu3O7−δ (Y-123) phase was found to shift to higher temperatures with increasing oxygen partial pressure and lanthanum content. Structure remained orthorhombic up to x=0.2 with a decrease in the orthorhombic strain ((ba)/b). Iodometric titration indicated a systematic increase in the oxygen content with increasing lanthanum content. Thermo-gravimetric studies in various oxygen partial pressures revealed that the oxygen diffusion in to the YBa2Cu3O7−δ (δ>0.5) lattice is an exothermic event and takes place at temperatures not less than 573 K. High-temperature thermal-expansion measurements in air indicated that the nonlinearity in thermal expansion behaviour was reduced by the substitution of lanthanum.  相似文献   

14.
田鹏   宋溪明   李莹  段纪东   梁志德  张辉 《化学学报》2006,64(23):2305-2309
利用差示扫描量热法(DSC)建立了无水三氯化铁和氯化正丁基吡啶(BPC)二元体系相图. 依据相图, FeCl3和BPC形成室温离子液体的窗口是x=0.26~0.58; 室温离子液体的深度是80 ℃. 利用UHF/6-31G*对FeCl3, FeCl4, Fe2Cl7等配合物的几何结构、键长、能量和Raman频率进行优化, 从头算和Raman光谱证实了相图中FeCl3摩尔分数x=0.50处有稳定化合物存在, FeCl4是主要阴离子; x=0.67处, FeCl4, Fe2Cl7是主要阴离子.  相似文献   

15.
The Pb2SnSb2S6-SnS system was studied over a wide range of concentrations using a set of physicochemical methods (powder X-ray diffraction, DTA, microstructure examination, and microhardness measurement). A phase diagram for the title quasi-binary join was constructed for the first time. The phase diagram is of the eutectic type; the eutectic coordinates are 25 mol % SnS and 775 K. The extents of solid solutions based on the terminal components were determined to be 10 mol % SnS and 5 mol % Pb2SnSb2S6. Alloys having compositions in the SnS-based solid solution region are semiconductors.  相似文献   

16.
Oxygen-deficient phases based on perovskite-like strontium cobaltites-ferrites are promising mixed conductors for high-temperature electrochemical applications. The p(O2)-T-δ diagrams for the oxide systems SrCo1– x y Fe x Cr y O3– δ (x=0.10–0.40; y=0–0.05) were studied at 500–1000 °C in the oxygen pressure range from 10–5 to 0.21 atm using the coulometric titration technique and thermogravimetric analysis. Stability limits of the cubic perovskite phases having a high oxygen ionic conductivity were evaluated as functions of temperature, oxygen partial pressure and oxygen nonstoichiometry. It was found that doping with chromium and increasing the iron content in SrCo(Fe,Cr)O3– δ both lead to a considerable enlargement of the cubic perovskite phase existence domain towards lower temperatures and reduced oxygen pressures. Electronic Publication  相似文献   

17.
Computer modelling techniques have been used to investigate the defect and oxygen transport properties of the Aurivillius phase Bi4Ti3O12. A range of cation dopant substitutions has been considered including the incorporation of trivalent ions (M3+=Al, Ga and In). The substitution of In3+ onto the Bi site in the [Bi2O2] layer is predicted to be the most favourable. The calculations suggest that lanthanide (Ln3+) doping at the dilute limit preferentially occurs in the [Bi2O2] layer, with probable distribution over both the [Bi2O2] and the perovskite A-site at higher dopant levels. It is predicted that the reduction process involving Ti3+ and oxygen vacancy formation is energetically favourable. The energetics of oxide vacancy migration between various oxygen sites in the structure have been investigated.  相似文献   

18.
The tetragonal compound Bi2CuO4 was investigated at high pressures by using in situ Raman scattering and X-ray diffraction (XRD) methods. A pressure-induced structural transition started at 20 GPa and completed at ∼37 GPa was found. The high pressure phase is in orthorhombic symmetry. Raman and XRD measurements revealed that the above phase transition is reversible.  相似文献   

19.
The perovskite-related layered structure of La2Ti2O7 has been studied at pressures up to 30 GPa using synchrotron radiation powder X-ray diffraction (XRD) and Raman scattering. The XRD results indicate a pronounced anisotropy for the compressibility of the monoclinic unit cell. The ratio of the relative compressibilities along the [100], [010] and [001] directions is ∼1:3:5. The greatest compressibility is along the [001] direction, perpendicular to the interlayer. A pressure-induced phase transition occurs at 16.7 GPa. Both Raman and XRD measurements reveal that the pressure-induced phase transition is reversible. The high-pressure phase has a close structural relation to the low-pressure monoclinic phase and the phase transition may be due to the tilting of TiO6 octahedra at high pressures.  相似文献   

20.
The evolution of stoichiometric LiMn2O4 upon annealing under oxygen pressures in the range 0.2-5 atm at moderate temperature (450°C) was studied with a combination of thermogravimetry, X-ray and neutron diffraction. It is shown that such treatments result in a slight, but significant mass increase. Structural analyses show that the resulting spinel is a manganese-deficient spinel phase with lower cell parameter and higher manganese valence, and that the expelled manganese forms Mn2O3. The presence of this second phase, which was not identified in a recent study of oxygen annealing on this compound (Nakamura and Kajiyama, Solid State Ionics 133 (2000) 195), is compatible with the initial stoichiometry and does not require any oxygen vacancies in the initial LiMn2O4, as supposed earlier. The most likely formula of the resulting lithium-rich spinel with increased manganese valence is Li(Mn2−εε)O4 with ε in the range 0.02-0.03 at 5 atm O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号