首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
General results about maps of convex sets in ? n are proved. We outline their extensions to an infinite-dimensional context. Such extensions have applications in nonlinear analysis such as in the study of the invariance of convex sets under nonlinear maps. Here, we explore applications only in the finite-dimensional context. More specifically, we apply the general results to the problem of finding sufficient conditions for a region of the state space to be globally or locally invariant under finite-difference schemes applied to systems of conservation laws in several space variables. In particular, we establish a final characterization of the invariant regions under the Lax-Friedrichs scheme and also give sufficient conditions for the local invariance. Further, we give sufficient conditions for the global and local invariance of regions under flux-splitting finite-difference schemes. An example of the multi-dimensional Euler equations for non-isentropic gas dynamics is discussed.  相似文献   

2.
A new perturbation method for a weakly nonlinear two-dimensional discrete-time dynamical system is presented. The proposed technique generalizes the asymptotic perturbation method that is valid for continuous-time systems and detects periodic or almost-periodic orbits and their stability. Two equations for the amplitude and the phase of solutions are derived and their fixed points correspond to limit cycles for the starting nonlinear map. The method is applied to various nonlinear (autonomous or not) two-dimensional maps. For the autonomous maps we derive the conditions for the appearance of a supercritical Hopf bifurcation and predict the characteristics of the corresponding limit cycle. For the nonautonomous maps we show amplitude-response and frequency-response curves. Under appropriate conditions, we demonstrate the occurrence of saddle-node bifurcations of cycles and of jumps and hysteresis effects in the system response (cusp catastrophe). Modulated motion can be observed for very low values of the external excitation and an infinite-period bifurcation occurs if the external excitation increases. Analytic approximate solutions are in good agreement with numerically obtained solutions.  相似文献   

3.
The problem of periodic solutions of nonlinear autonomous systems with many degrees of freedom is considered. This is made possible by the development ora modified version of the KBM method. The method can be used to generate limit cycle phase portrait, amplitude, period and to indicate stability of the limit cycle.  相似文献   

4.
Invariant fiber bundles are the generalization of invariant manifolds from discrete dynamical systems (mappings) to non-autonomous difference equations. In this paper we present a self-contained proof of their existence and smoothness. Our main result generalizes the so-called Hadamard–Perron-Theorem for time-dependent families of pseudo-hyperbolic mappings from the finite-dimensional invertible to the infinite-dimensional non-invertible case.  相似文献   

5.
For a linear inhomogeneous differential equation in a Banach space, we find a criterion for the existence of solutions that are bounded on the entire real axis under the assumption that the homogeneous equation admits an exponential dichotomy on the semiaxes. This result is a generalization of the Palmer lemma to the case of infinite-dimensional spaces. We consider examples of countable systems of ordinary differential equations that have bounded solutions. __________ Translated from Neliniini Kolyvannya, Vol. 9, No. 1, pp. 3–14, January–March, 2006.  相似文献   

6.
In this paper we prove some theorems on the existence of harmonic solutions of somesecond-order nonlinear equations under a periodic force.These theorems extend relevantresults in refs.[1]-[8].  相似文献   

7.
In the continuum structural mechanics framework, a unilateral contact condition between two flexible bodies does not generate impulsive contact forces. However, finite-dimensional systems, derived from a finite element semi-discretization in space for instance, and undergoing a unilateral contact condition, require an additional impact law: Unilateral contact occurrences then become impacts of zero duration unless (i) the impact law is purely inelastic, or (ii) the pre-impact velocity is zero. This contribution explores autonomous periodic solutions with one contact phase per period and zero pre-impact velocity [case (ii)], for any n-dof mechanical systems involving linear free-flight dynamics together with a linear unilateral contact constraint. A recent work has shown that such solutions seem to be limits of periodic trajectories with k impacts per period as k increases. Minimal analytic equations governing the existence of such solutions are proposed, and it is proven that, generically, they occur only for discrete values of the period. It is also shown that the graphs of such periodic solutions have two axes of symmetry in time. Results are illustrated on a spring–mass system and on a 4-dof two-dimensional system made of 1D finite elements. Animations of SPPs with up to 30 dofs are provided.  相似文献   

8.
9.
This paper is devoted to time-global solutions of the Fisher-KPP equation in ℝ N :
where f is a C 2 concave function on [0,1] such that f(0)=f(1)=0 and f>0 on (0,1). It is well known that this equation admits a finite-dimensional manifold of planar travelling-fronts solutions. By considering the mixing of any density of travelling fronts, we prove the existence of an infinite-dimensional manifold of solutions. In particular, there are infinite-dimensional manifolds of (nonplanar) travelling fronts and radial solutions. Furthermore, up to an additional assumption, a given solution u can be represented in terms of such a mixing of travelling fronts. Accepted October 30, 2000?Published online March 21, 2001  相似文献   

10.
In an earlier paper we generalized the notion of a hyperbolic set and proved that the Shadowing Lemma remains valid, for C1-maps which need not be invertible. Here we establish the existence of (generalized) hyperbolic structures along transversal homoclinic trajectories of C1-maps. The hyperbolic structure and shadowing are then used to give a new proof of a result due to Hale and Lin (and ilnikov) on symbolic dynamics forall trajectories sufficiently close to a transversal homoclinic trajectory. The result is applied to a Poincaré map without continuous inverse, which is associated with a periodic orbit of an autonomous differential delay equation.  相似文献   

11.
This paper develops a rigorous notion of dissipation-induced instability in infinite dimensions as an extension of the classical concept implicitly introduced by Thomson and Tait for finite degree of freedom mechanical systems over a century ago. Here we restrict ourselves to a particular form of infinite-dimensional systems—partial differential equations—whose inherent function-analytic differences from finite-dimensional systems make uncovering this notion more intricate. In building the concept of dissipation-induced instability in infinite dimensions we found Arnold’s and Yudovich’s nonlinear stability methods, for conservative and dissipative systems respectively, along with some new existence theory for solutions, to be the essential foundation. However, when proving the results for classical solutions, as motivated by their direct physical significance, we had to overcome a number of fundamental difficulties associated with existing stability analysis methods, which has led to new techniques. In particular, in this work we establish the connection of existence and general stability theories in strong and weak topologies and provide new insights into the physics and geometry of the dissipation-induced instability phenomena in infinite-dimensional systems. As a paradigm and the first infinite-dimensional example to be rigorously analyzed, we use a two-layer quasi-geostrophic beta-plane model, which describes the fundamental baroclinic instability in atmospheric and ocean dynamics; early formal linear approximate studies suggested that this system can be destabilized after the introduction of dissipation.  相似文献   

12.
In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.  相似文献   

13.
In this paper, we extend the energy-Casimir stability method for deterministic Lie–Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems.  相似文献   

14.
A Predator–Prey type of dynamical systems with non-monotonic response function and time-periodic perturbation is considered in this paper. We present a proof for the number of equilibria in the unperturbed system at some parts of the parameter space. The perturbed system is a dynamical system defined by a periodic vector field. We present an alternative proof for a classical result on the period of the periodic solution. By using a numerical continuation method AUTO (Doedel et al., 1986 [9]), we present a bifurcation analysis for periodic solution of the perturbed system where we found fold, cusp and Swallowtail bifurcations.  相似文献   

15.
The phenomenon of roll-waves occurs when shallow water flows down open inclined channels. This flow is described by the Saint Venant’s equations with a friction term due to Chezy. In the case of a flat bottom, their existence (as entropic and periodic travelling waves) follows from a classical work due to DRESSLER [6]. The aim of this paper is to prove the existence of roll-waves when the bottom is modulated by a small periodic perturbation. Following JIN and KATSOULAKIS [15], we first compute a Burgers-type equation which possesses “pulsating” roll-waves (the wave speed oscillates around an average velocity). We prove, in a mathematically rigorous fashion, the existence of these solutions.  相似文献   

16.
This paper deals with a systematic procedure to find both stable and unstable periodic stick-slip vibrations of autonomous dynamic systems with dry friction. In this procedure, the discontinuous friction forces are approximated by smooth functions. Using the simple shooting method with a stiff-ODE solver, in combination with a path following algorithm, branches of periodic solutions are computed for a changing design variable. For testing purposes, both 1 and 2-DOF autonomous block-on-belt models and a 1-DOF autonomous drill string model from literature are investigated. Comparison of the results shows that the smoothing procedure accurately describes the behavior of the discontinuous systems. The proposed procedure can also easily be applied to more complex MDOF models, as well as to nonautonomous dynamic systems.  相似文献   

17.
We consider discrete equivariant dynamical systems and obtain results about the structure of attractors for such systems. We show, for example, that the symmetry of an attractor cannot, in general, be an arbitrary subgroup of the group of symmetries. In addition, there are group-theoretic restrictions on the symmetry of connected components of a symmetric attractor. The symmetry of attractors has implications for a new type of pattern formation mechanism by which patterns appear in the time-average of a chaotic dynamical system.Our methods are topological in nature and exploit connectedness properties of the ambient space. In particular, we prove a general lemma about connected components of the complement of preimage sets and how they are permuted by the mapping.These methods do not themselves depend on equivariance. For example, we use them to prove that the presence of periodic points in the dynamics limits the number of connected components of an attractor, and, for one-dimensional mappings, to prove results on sensitive dependence and the density of periodic points.  相似文献   

18.
The Energy of Some Microscopic Stochastic Lattices   总被引:1,自引:0,他引:1  
We introduce a notion of energy for some microscopic stochastic lattices. Such lattices are broad generalizations of simple periodic lattices, for which the question of the definition of an energy was examined in a series of previous works [14–18]. Note that slightly more general deterministic geometries were also considered in [6]. These lattices are involved in the modelling of materials whose microscopic structure is a perturbation, in a sense made precise in the article, of the periodic structure of a perfect crystal. The modelling considered here is either a classical modelling, where the sites of the lattice are occupied by ball-like atomic systems that interact by pair potentials, or a quantum modelling where the sites are occupied by nuclei equipped with an electronic structure spread all over the ambient space. The corresponding energies for the infinite stochastic lattices are derived consistently with truncated systems of finite size, by application of a thermodynamic limit process. Subsequent works [7, 8] will be devoted to the macroscopic limits of the energies of such microscopic lattices, thereby extending to a stochastic context the results of [4, 5]. Such convergences in a stochastic setting (in dimension 1) have been studied in [21, 22]. We will also study in [8] some variants and extensions of the stationary setting presented here.  相似文献   

19.
We consider the motions of a system consisting of two pivotally connected physical pendulums rotating about horizontal axes. We assume that the system suspension point, which coincides with the suspension point of one of the pendulums, performs harmonic vibrations of high frequency and small amplitude along the vertical. We also assume that the system has four relative equilibrium positions in which the suspension points and the pendulum centers of mass lie on one vertical line. We study the stability of these relative equilibria. For arbitrary physical pendulums, we obtain stability conditions in the linear approximation. For a system consisting of two identical rods, we solve the stability problem the in nonlinear setting. For the same system, we study the existence, bifurcations, and stability of high-frequency periodic motions of small amplitude other than the relative equilibria on the vertical line. The studies of dynamic stability augmentation in mechanical systems under the action of high-frequency perturbations was initiated in the paper [1], where it was shown that the unstable inverted equilibrium of a pendulum may become stable if the suspension point vibrates rapidly. This idea was developed in [2–10] and other papers, where several aspects of motion of a mathematical pendulum in the case of rapid small-amplitude vibrations of the suspension point were studied in the linear setting and also (without full mathematical rigor) in the nonlinear setting. The motions of the suspension point along an arbitrary oblique straight line [2, 4, 7, 8], along the vertical [3, 5, 6], along the horizontal [9], and in the case of damping [8] were considered. The monograph [10] deals with the stabilization of a pendulum or a system of pendulums under periodic and conditionally periodic vibrations of the suspension point along the vertical, along an oblique straight line, and along an ellipse. A rigorous nonlinear analysis of the existence and stability of periodic motions of the mathematical pendulum under horizontal and oblique vibrations of the suspension point at arbitrary frequencies and amplitudes can be found in [11, 12]. For the case of vertical vibrations of the suspension point at an arbitrary frequency and amplitude, a rigorous stability analysis of the relative equilibria of the pendulum on the vertical was carried out in [13].  相似文献   

20.
The motion of a dumbbell-shaped body (a pair of massive points connected with each other by a weightless rod along which the elevator, i.e., a third point, is moving according to a given law) in an attractive Newtonian central field is considered. In particular, such a mechanical system can be considered as a simplified model of an orbital cable system equipped with an elevator. The practically most interesting case where the cabin performs periodic ??shuttle??motions is studied. Under the assumption that the elevator mass is small compared with the dumbbell mass, the Poincaré theory is used to determine the conditions for the existence of families of system periodic motions analytically depending on the arising small parameter and passing into some stable radial steady-state motion of the unperturbed problem as the small parameter tends to zero. It is also proved that, for sufficiently small parameter values, each of the radial relative equilibria generates exactly one family of such periodic motions. The stability of the obtained periodic solutions is studied in the linear approximation, and these solutions themselves are calculated up to terms of the firstorder in the small parameter. The contemporary studies of the motion of orbital dumbbell systems apparently originated in Okunev??s papers [1, 2]. These studies were continued in [3], where plane motions of an orbit tether (represented as a dumbbell-shaped satellite) in a circular orbit were considered in the satellite approximation. In [4], in the case of equal masses and in the unbounded statement, the energy-momentum method was used to perform the dynamic reduction of the problem and analyze the stability of relative equilibria. A similar technique was used in [5], where, in contrast to the above-mentioned problems, the massive points were connected by an elastic spring resisting to compression and forming a dumbbell with elastic properties. Under such assumptions, the stability of radial configurations was investigated in that paper. The bifurcations and stability of steady-state configurations of a deformable elastic dumbbell were also studied in [6]. Various obstacles arising in the construction of orbital cable systems, in particular, the strong deformability of known materials, were discussed in [7]. In [8], the problem of orbital motion of a pair of massive points connected by an inextensible weightless cable was considered in the exact statement. In other words, it was assumed that a unilateral constraint is imposed on themassive points. The conditions of stability of vertical positions of the relative equilibria of the cable system, which were obtained in [8], can be used for any ratio of the subsatellite and station masses. In turn, these results agree well with the results obtained earlier in the studies of stability of vertical configurations in the case of equal masses of the system end bodies [3, 4]. One of the basic papers in the dynamics of three-body orbital cable systems is the paper [9]. The steady-state motions and their bifurcations and stability were studied depending on the elevator cabin position in [10].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号