首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The one-dimensional, gravity-driven film flow of a linear (l) or exponential (e) Phan-Thien and Tanner (PTT) liquid, flowing either on the outer or on the inner surface of a vertical cylinder or over a planar wall, is analyzed. Numerical solution of the governing equations is generally possible. Analytical solutions are derived only for: (1) l-PTT model in cylindrical and planar geometries in the absence of solvent, b o [(h)\tilde]s/([(h)\tilde]s +[(h)\tilde]p)=0\beta\equiv {\tilde{\eta}_s}/\left({\tilde{\eta}_s +\tilde{\eta}_p}\right)=0, where [(h)\tilde]p\widetilde{\eta}_p and [(h)\tilde]s\widetilde{\eta}_s are the zero-shear polymer and solvent viscosities, respectively, and the affinity parameter set at ξ = 0; (2) l-PTT or e-PTT model in a planar geometry when β = 0 and x 1 0\xi \ne 0; (3) e-PTT model in planar geometry when β = 0 and ξ = 0. The effect of fluid properties, cylinder radius, [(R)\tilde]\tilde{R}, and flow rate on the velocity profile, the stress components, and the film thickness, [(H)\tilde]\tilde{H}, is determined. On the other hand, the relevant dimensionless numbers, which are the Deborah, De=[(l)\tilde][(U)\tilde]/[(H)\tilde]De={\tilde{\lambda}\tilde{U}}/{\tilde{H}}, and Stokes, St=[(r)\tilde][(g)\tilde][(H)\tilde]2/([(h)\tilde]p +[(h)\tilde]s )[(U)\tilde]St=\tilde{\rho}\tilde{g}\tilde{\rm H}^{2}/\left({\tilde{\eta}_p +\tilde{\eta}_s} \right)\tilde{U}, numbers, depend on [(H)\tilde]\tilde{H} and the average film velocity, [(U)\tilde]\widetilde{U}. This makes necessary a trial and error procedure to obtain [(H)\tilde]\tilde{H} a posteriori. We find that increasing De, ξ, or the extensibility parameter ε increases shear thinning resulting in a smaller St. The Stokes number decreases as [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to zero for a film on the outer cylindrical surface, while it asymptotes to very large values when [(R)\tilde]/[(H)\tilde]{\tilde{R}}/{\tilde{H}} decreases down to unity for a film on the inner surface. When x 1 0\xi \ne 0, an upper limit in De exists above which a solution cannot be computed. This critical value increases with ε and decreases with ξ.  相似文献   

3.
An experiment was carried out to investigate the characteristics of the heat transfer and pressure drop for forced convection airflow over tube bundles that are inclined relative to the on-coming flow in a rectangular package with one outlet and two inlets. The experiments included a wide range of angles of attack and were extended over a Reynolds number range from about 250 to 12,500. Correlations for the Nusselt number and pressure drop factor are reported and discussed. As a result, it was found that at a fixed Re, for the tube bundles with attack angle of 45 ° has the best heat transfer coefficient, followed by 60, 75 and 90 °, respectively. This investigation also introduces the factors which can be used for finding the heat transfer and the pressure drop factor on the tube bundles positioned at different angles to the flow direction. Moreover, no perceptible dependence of Cand C on Re was detected. In addition, flow visualizations were explored to broaden our fundamental understanding of the heat transfer for the present study.  相似文献   

4.
We investigate the solvability of the instationary Navier–Stokes equations with fully inhomogeneous data in a bounded domain W ì \mathbbRn \Omega \subset {{\mathbb{R}}^{n}} . The class of solutions is contained in Lr(0, T; Hb, qw (W))L^{r}(0, T; H^{\beta, q}_{w} (\Omega)), where Hb, qw (W){H^{\beta, q}_{w}} (\Omega) is a Bessel-Potential space with a Muckenhoupt weight w. In this context we derive solvability for small data, where this smallness can be realized by the restriction to a short time interval. Depending on the order of this Bessel-Potential space we are dealing with strong solutions, weak solutions, or with very weak solutions.  相似文献   

5.
G-equations are well-known front propagation models in turbulent combustion which describe the front motion law in the form of local normal velocity equal to a constant (laminar speed) plus the normal projection of fluid velocity. In level set formulation, G-equations are Hamilton–Jacobi equations with convex (L 1 type) but non-coercive Hamiltonians. Viscous G-equations arise from either numerical approximations or regularizations by small diffusion. The nonlinear eigenvalue [`(H)]{\bar H} from the cell problem of the viscous G-equation can be viewed as an approximation of the inviscid turbulent flame speed s T. An important problem in turbulent combustion theory is to study properties of s T, in particular how s T depends on the flow amplitude A. In this paper, we study the behavior of [`(H)]=[`(H)](A,d){\bar H=\bar H(A,d)} as A → + ∞ at any fixed diffusion constant d > 0. For cellular flow, we show that
$\bar H(A,d)\leqq C(d) \quad \text{for all}\ d >0 ,$\bar H(A,d)\leqq C(d) \quad \text{for all}\ d >0 ,  相似文献   

6.
Molecular dynamics simulation of annular flow boiling in a nanochannel is numerically investigated. In this research, an annular flow model is developed to predict the superheated flow boiling heat transfer characteristics in a nanochannel. To characterize the forced annular boiling flow in a nanochannel, an external driving force F?\textext \overrightarrow {F}_{\text{ext}} ranging from 1 to 12 PN (PN = pico newton) is applied along the flow direction to inlet fluid particles during the simulation. Based on an annular flow model analysis, it is found that saturation condition and superheat degree have great influences on the liquid–vapor interface. Also, the results show that due to the relatively strong influence of the surface tension in small channels, the interface between the liquid film and the vapor core is fairly smooth, and the mean velocity along the stream-wise direction does not change anymore. Also, it is found that the heat flux values depend on the boundary conditions. Finally, the Green–Kubo formula is used to calculate the thermal conductivity of liquid Argon. The simulations predict thermal conductivity of liquid Argon quite well.  相似文献   

7.
This paper is motivated by the study of a version of the so-called Schrödinger–Poisson–Slater problem: $- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,$ where ${u \in H^{1}(\mathbb {R}^3)}This paper is motivated by the study of a version of the so-called Schr?dinger–Poisson–Slater problem:
- Du + wu + l( u2 *\frac1|x| ) u=|u|p-2u,- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,  相似文献   

8.
This paper deals with the rational function approximation of the irrational transfer function G(s) = \fracX(s)E(s) = \frac1[(t0s)2m + 2z(t0s)m + 1]G(s) = \frac{X(s)}{E(s)} = \frac{1}{[(\tau _{0}s)^{2m} + 2\zeta (\tau _{0}s)^{m} + 1]} of the fundamental linear fractional order differential equation (t0)2m\fracd2mx(t)dt2m + 2z(t0)m\fracdmx(t)dtm + x(t) = e(t)(\tau_{0})^{2m}\frac{d^{2m}x(t)}{dt^{2m}} + 2\zeta(\tau_{0})^{m}\frac{d^{m}x(t)}{dt^{m}} + x(t) = e(t), for 0<m<1 and 0<ζ<1. An approximation method by a rational function, in a given frequency band, is presented and the impulse and the step responses of this fractional order system are derived. Illustrative examples are also presented to show the exactitude and the usefulness of the approximation method.  相似文献   

9.
Let Ω be a bounded smooth domain in ${{\bf R}^N, N\geqq 3}Let Ω be a bounded smooth domain in RN, N\geqq 3{{\bf R}^N, N\geqq 3}, and Da1,2(W){D_a^{1,2}(\Omega)} be the completion of C0(W){C_0^\infty(\Omega)} with respect to the norm:
||u||a2W |x|-2a|?u|2dx.||u||_a^2=\int_\Omega |x|^{-2a}|\nabla u|^2{d}x.  相似文献   

10.
An extension applicable to various k–ε models is proposed to account for the damping of turbulence due to the surface tension. It consists of a sink in the equation for $ {{\overline{D} k} \mathord{\left/ {\vphantom {{\overline{D} k} {\overline{D} t}}} \right. \kern-0em} {\overline{D} t}} $ and a source in the equation for $ {{\overline{D} \varepsilon } \mathord{\left/ {\vphantom {{\overline{D} \varepsilon } {\overline{D} t}}} \right. \kern-0em} {\overline{D} t}} $ both derived from dimensional analysis. First numerical experiments are undertaken with a commercial CFD software. Reasons are given why the tuning of the model should be performed with thermal experiments. The proposed model is practical, since it only needs the programming of source terms. On account of it’s mathematical structure it needs a very small closure coefficient. The intention of this article is to stimulate the numerical turbulence research in a way that is applicable to the engineering practice. A comparison to experimental data is not done here.  相似文献   

11.
A poly(vinyl chloride) (PVC,  Mw = 102×103)(\mbox{PVC,}\;{\rm M}_{\rm w} =102\times 10^3) di-octyl phthalate (DOP) gel with PVC content of 20 wt.% was prepared by a solvent evaporation method. The dynamic viscoelsticity and elongational viscosity of the PVC/DOP gel were measured at various temperatures. The gel exhibited a typical sol–gel transition behavior with elevating temperature. The critical gel temperature (Tgel) characterized with a power–law relationship between the storage and loss moduli, G and G, and frequency ω, G¢=G¢¢/tan  ( np/2 ) μ wn{G}^\prime={G}^{\prime\prime}{\rm /tan}\;\left( {{n}\pi {\rm /2}} \right)\propto \omega ^{n}, was observed to be 152°C. The elongational viscosity of the gel was measured below the Tgel. The gel exhibited strong strain hardening. Elongational viscosity against strain plot was independent of strain rate. This finding is different from the elongational viscosity behavior of linear polymer solutions and melts. The stress–strain relations were expressed by the neo-Hookean model at high temperature (135°C) near the Tgel. However, the stress–strain curves were deviated from the neo-Hookean model at smaller strain with decreasing temperature. These results indicated that this physical gel behaves as the neo-Hookean model at low cross-linking point, and is deviated from the neo-Hookean model with increasing of the PVC crystallites worked as the cross-linking junctions.  相似文献   

12.
Forced convective heat transfer coefficients and friction factors for flow of water in microchannels with a rectangular cross section were measured. An integrated microsystem consisting of five microchannels on one side and a localized heater and seven polysilicon temperature sensors along the selected channels on the other side was fabricated using a double-polished-prime silicon wafer. For the microchannels tested, the friction factor constant obtained are values between 53.7 and 60.4, which are close to the theoretical value from a correlation for macroscopic dimension, 56.9 for D h  = 100 μm. The heat transfer coefficients obtained by measuring the wall temperature along the micro channels were linearly dependent on the wall temperature, in turn, the heat transfer mechanism is strongly dependent on the fluid properties such as viscosity. The measured Nusselt number in the laminar flow regime tested could be correlated by which is quite different from the constant value obtained in macrochannels.  相似文献   

13.
The time-dependent Navier--Stokes problem on an interior or exterior smooth domain, with nonhomogeneous Dirichlet boundary condition, is treated in anisotropic Lp Sobolev spaces (1 < p < ¥ \infty ) of Bessel-potential type Hs+2,s/2+1p H^{s+2,s/2+1}_p or Besov type Bs+2,s/2+1p B^{s+2,s/2+1}_p by use of a reformulation of the linearized problem to a parabolic pseudodifferential boundary value problem. Earlier studies required s > \frac 1p - 1 s > {\frac 1p} - 1 ; the present work extends the solvability to spaces with s > \frac 1p - 2 s > {\frac 1p} - 2 for zero initial data (s > - 2 s > - 2 if f = 0), s > \frac 2p - 2 s > {\frac 2p} - 2 for nonzero initial data, with s,p subject to other conditions stemming from the nonlinearity.  相似文献   

14.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

15.
The mutual coefficient of diffusion of the dicumyl peroxide (DCP), which diffuses into an ethylene–octene copolymer above its T g was measured from an innovative rheological experiment. The experiments were carried out on a parallel plate geometry rheometer. The method is based on the cross-linking of a two-layer sample; the upper layer contains 2 wt% of DCP, and the lower layer is free of DCP. Actually, this experiment is based on the competition between the reaction of cross-linking and the diffusion of DCP in the lower layer. Comparing this rheological behavior with the rheological kinetic of cross-linking of an homogeneous sample with 1 wt% DCP, we are able, from an inverse fitting procedure, to calculate the mutual coefficient of diffusion. Our hypothesis is that the diffusion of DCP in the copolymer above T g, can be described by Fick’s classical law. Using Fick’s law, the concentration of the DCP was established for any given point of the thickness of the two-layer sample at any time. Using a one-dimensional grid to solve continuous equations that describe the different rheological contributions of each abscissa, we determined the linear viscoelastic response of the whole sample. Comparing the experimental storage modulus of the two layer sample to the values measured from an homogeneous sample, we found the values of the mutual coefficient of diffusion. Finally, a simple relation, which describes the mutual coefficient of diffusion of DCP into melt ethylene–octene copolymer was established according to an Arrhenius law as:
Moreover, this work clearly shows how a reaction in molten media can be controlled by the diffusion process of small reactive molecules.  相似文献   

16.
A filament stretching extensional rheometer with a custom-built oven was used to investigate the effect of uniaxial flow on the crystallization of polypropylene. Prior to stretching, samples were heated to a temperature well above the melt temperature to erase their thermal and mechanical histories and the Janeschitz-Kriegl protocol was applied. The samples were stretched at extension rates in the range of 0.01 s-1 £ [(e)\dot] £ 0.75 s-10.01\,\mbox{s}^{-1}\le \dot{{\varepsilon }}\le 0.75\,{\rm s}^{-1} to a final strain of ε = 3.0. After stretching, the samples were allowed to crystallize isothermally. Differential scanning calorimetry was applied to the crystallized samples to measure the degree of crystallinity. The results showed that a minimum extension rate is required for an increase in percent crystallization to occur and that there is an extension rate for which percent crystallization is maximized. No increase in crystallization was observed for extension rates below a critical extension rate corresponding to a Weissenberg number of approximately Wi = 1. Below this Weissenberg number, the flow is not strong enough to align the contour path of the polymer chains within the melt and as a result there is no change in the final percent crystallization from the quiescent state. Beyond this critical extension rate, the percent crystallization was observed to increase to a maximum, which was 18% greater than the quiescent case, before decaying again at higher extension rates. The increase in crystallinity is likely due to flow-induced orientation and alignment of contour path of the polymer chains in the flow direction. Polarized light microscopy verified an increase in number of spherulites and a decrease in spherulite size with increasing extension rate. In addition, small angle X-ray scattering showed a 7% decrease in inter-lamellar spacing at the transition to flow-induced crystallization. Although an increase in strain resulted in a slight increase in percent crystallization, no significant trends were observed. Crystallization kinetics were examined as a function of extension rate by observing the time required for molten samples to crystallize under uniaxial flow. The crystallization time was defined as the time at which a sudden increase in the transient force measurement was observed. The crystallization time was found to decrease as one over the extension rate, even for extension rates where no increase in percent crystallization was observed. As a result, the onset of extensional-flow-induced crystallization was found to occur at a constant value of strain equal to ε c  = 5.8.  相似文献   

17.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

18.
We establish the existence and uniqueness results over the semi-infinite interval [0,∞) for a class of nonlinear third order ordinary differential equations of the form
lf"¢( h) + f( h)f"( h) - ( f¢( h) )2 - Mf¢( h)    + C(C + M ) = 0,f( 0 ) = s ,       f¢( 0 ) = c,       limh? ¥ f¢( h) = C.\begin{array}{l}f'( \eta) + f( \eta)f'( \eta) - ( f'( \eta) )^{2} - Mf'( \eta)\\[6pt]\quad {}+ C(C + M ) = 0,\\[6pt]f( 0 ) = s ,\qquad f'( 0 ) = \chi ,\qquad \displaystyle\lim\limits_{\eta \to \infty} f'( \eta) = C.\end{array}  相似文献   

19.
The purpose of this article is to derive a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ, the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are on the length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient to the filtration or Darcy velocity in a coupled nonlinear form explicitly given by
or equivalently
In these equations, and are the inertial and coupling inertial correction tensors that are functions of flow-rates. The dominant and coupling permeability tensors and and the permeability and viscous drag tensors and are intrinsic and are those defined in the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined from closure problems that are to be solved using a spatially periodic model of a porous medium. The practical procedure to compute these tensors is provided.  相似文献   

20.
In this paper, exact solutions are constructed for stationary election beams that are degenerate in the Cartesian (x,y,z), axisymmetric (r,θ,z), and spiral (in the planes y=const (u,y,v)) coordinate systems. The degeneracy is determined by the fact that at least two coordinates in such a solution are cyclic or are integrals of motion. Mainly, rotational beams are considered. Invariant solutions for beams in which the presence of vorticity resulted in a linear dependence of the electric-field potential ? on the above coordinates were considered in [1], In degenerate solutions, the presence of vorticity results in a quadratic or more complex dependence of the potential on the coordinates that are integrals of motion. In [2] and in a number of papers referred to in [2], the degenerate states of irrotational beams are described. The known degenerate solutions for rotational beams apply to an axisymmetric one-dimensional (r) beam with an azimuthal velocity component [3] and to relativistic conical flow [1]. The equations used below follow from the system of electron hydrodynamic equations for a stationary relativistic beam $$\begin{array}{*{20}c} {\sum\limits_{\beta = 1}^3 {\frac{\partial }{{\partial q^\beta }}\left[ {\sqrt \gamma g^{\beta \beta } g^{\alpha \alpha } \left( {\frac{{\partial A_\alpha }}{{\partial q^\beta }} - \frac{{\partial A_\beta }}{{\partial q^\alpha }}} \right)} \right]} = 4\pi \rho \sqrt \gamma g^{\alpha \alpha } u_\alpha ,} \\ {\sum\limits_{\beta = 1}^3 {\frac{\partial }{{\partial q^\beta }}\left( {\sqrt \gamma g^{\beta \beta } \frac{{\partial \varphi }}{{\partial q^\beta }}} \right)} = 4\pi \rho \sqrt {\gamma u} ,\sum\limits_{\beta = 1}^3 {g^{\beta \beta } u_\beta ^2 + 1 = u^2 } } \\ \begin{gathered} \frac{\eta }{c}u\frac{{\partial \mathcal{E}}}{{\partial q^\alpha }} = \sum\limits_{\beta = 1}^3 {g^{\beta \beta } u_\beta } \left( {\frac{{\partial p_\beta }}{{\partial q^\alpha }} - \frac{{\partial p_\alpha }}{{\partial q^\beta }}} \right), \hfill \\ \begin{array}{*{20}c} {\sum\limits_{\beta = 1}^3 {\frac{\partial }{{\partial q^\beta }}(\sqrt \gamma g^{\beta \beta } \rho u_\beta ) = 0,u \equiv \frac{\eta }{{c^2 }}(\varphi + \mathcal{E}) + 1,} } \\ {cu_\alpha \equiv \frac{\eta }{c}A_\alpha + p_\alpha ,\alpha ,\beta = 1,2,3,\gamma \equiv g_{11} g_{22} g_{33} } \\ \end{array} \hfill \\ \end{gathered} \\ \end{array} $$ where qβ denotes orthogonal coordinates with the metric tensor gββ (β=1,2,3); Aα is the magnetic potential; Aα = (uα/u)c is the electron velocity; ρ is the scalar space-charge density (ρ > 0); is the energy in eV; pα is the generalized momentum of an electron per unit mass; η is the electron charge-mass ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号