首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations have been performed to investigate the structures of Lennard–Jones(LJ) nanowires(NWs) encapsulated in carbon nanotubes(CNTs). We find that the structures of NWs in a small CNT only adopt multi-shell motifs, while the structures of NWs in a larger CNT tend to adopt various motifs. Among these structures, three of them have not been reported previously. The phase boundaries among these structures are obtained regarding filling fractions, as well as the interaction between NWs and CNTs.  相似文献   

2.
Estimating accurately the natural frequencies of electrically actuated carbon nanotubes (CNTs) has been an active research subject over the past few years. Despite the importance of the topic, robust knowledge is still missing in the understanding of the role of various physical parameters affecting the natural frequencies, such as the stretching of doubly clamped CNTs, the DC electrostatic force, and the initial curvature of slack CNTs. In this investigation, we use a 2D nonlinear curved beam model in the form of an arch to simulate the coupled in-plane and out-of-plane motions of a CNT with curvature. We calculate the variation of its natural frequencies and mode shapes with the level of slackness and the DC electrostatic load. Towards this end, we derive a reduced-order model using a multimode Galerkin procedure. We show various scenarios of mode crossing and mode veering as the levels of slackness and DC load are varied. Finally, we tackle the forced vibration problem of a curved CNT when actuated by small DC and AC loads. The results show the transfer of energy among the vibration modes involved in the veering phenomenon.  相似文献   

3.
Supercapacitor (SC) electrodes fabricated with the combination of carbon nanotubes (CNTs) and metal oxides are showing remarkable advancements in the electrochemical properties. Herein, NiO decorated CNT/ZnO core-shell hybrid nanocomposites (CNT/ZnO/NiO HNCs) are facilely synthesized by a two-step solution-based technique for the utilization in hybrid supercapacitors. Benefitting from the synergistic advantages of three materials, the CNT/ZnO/NiO HNCs based electrode has evinced superior areal capacity of ~67 µAh cm−2 at a current density of 3 mA cm−2 with an exceptional cycling stability of 112% even after 3000 cycles of continuous operation. Highly conductive CNTs and electrochemically active ZnO contribute to the performance enhancement. Moreover, the decoration of NiO on the surface of CNT/ZnO core-shell increases the electro active sites and stimulates the faster redox reactions which play a vital role in augmenting the electrochemical properties. Making the use of high areal capacity and ultra-long stability, a hybrid supercapacitor (HSC) was assembled with CNT/ZnO/NiO HNCs coated nickel foam (CNT/ZnO/NiO HNCs/NF) as positive electrode and CNTs coated NF as negative electrode. The fabricated HSC delivered an areal capacitance of 287 mF cm−2 with high areal energy density (67 µWh cm−2) and power density (16.25 mW cm−2). The combination of battery type CNT/ZnO/NiO HNCs/NF and EDLC type CNT/NF helped in holding the capacity for a long period of time. Thus, the systematic assembly of CNTs and ZnO along with the NiO decoration enlarges the application window with its high rate electrochemical properties.  相似文献   

4.
In this paper, we have studied field emission properties of highly dense arrays of multi-walled carbon nanotubes (CNTs) used as cathodes in diode-type field emission devices with a phosphor screen. For the high-density CNT emitters it is demonstrated that the emission sites are located on the CNT-cathode edges, which is direct experimental evidence of the ‘edge effect’. The results of computer simulations (using ‘ANSYS Electromagnetic’ software) are presented to confirm the experimental data and to analyze the effect of patterning on the electric field distribution for high-density CNT arrays. It is shown that selective-area removal of nanotubes in the arrays leads to the formation of additional edges characterized by the high field enhancement factor and enhanced emission from the CNT cathodes. In addition, scanning probe microscopy techniques are employed to examine surface properties of the high-density CNT arrays. For CNT arrays of ‘short’ nanotubes, the work function distribution over the sample surface is detected using a scanning Kelvin microscopy method.  相似文献   

5.
Matrix-assisted pulsed laser evaporation (MAPLE) is a prominent member of a broad and expanding class of laser-driven deposition techniques where a matrix of volatile molecules absorbs laser irradiation and provides the driving force for the ejection and transport of the material to be deposited. The mechanisms of MAPLE are investigated in coarse-grained molecular dynamic simulations focused on establishing the physical regimes and limits of the molecular transfer from targets with different structures and compositions. The systems considered in the simulations include dilute solutions of polymer molecules and individual carbon nanotubes (CNTs), as well as continuous networks of carbon nanotubes impregnated with solvent. The polymer molecules and nanotubes are found to be ejected only in the ablation regime and are incorporated into matrix-polymer droplets generated in the process of the explosive disintegration of the overheated matrix. The ejection and deposition of droplets explain the experimental observations of complex surface morphologies in films deposited by MAPLE. In simulations performed for MAPLE targets loaded with CNTs, the ejection of individual nanotubes, CNT bundles, and tangles with sizes comparable or even exceeding the laser penetration depth is observed. The ejected CNTs align along the flow direction in the matrix plume and tend to agglomerate into bundles at the initial stage of the ablation plume expansion. In a large-scale simulation performed for a target containing a network of interconnected CNT bundles, a large tangle of CNT bundles with the total mass of 50 MDa is separated from the continuous network and entrained with the matrix plume. No significant splitting and thinning of CNT bundles in the ejection process is observed in the simulations, suggesting that fragile structural elements or molecular agglomerates with complex secondary structures may be transferred and deposited to the substrate with the MAPLE technique.  相似文献   

6.
This work addresses the production of stand-alone ceramic nanotubes by the template-based ALD method at low temperature. Nitrogen-doped multiwalled carbon nanotubes (CNTs) were coated with ZnO. Afterward, the template removal was evaluated by two different approaches: using oxidation in dry air or in an ozone-rich atmosphere. The samples treated by the two different methods were analyzed by XRD, TEM, SAED, and Raman spectroscopy. The dry air atmosphere requires high temperatures (~?700 °C) for a complete CNT removal; at that temperature, the ZnO tubular shape is completely collapsed due to recrystallization. Under ozone atmosphere, the template can be removed at temperatures as low as 85 °C; this temperature is lower than the ALD preparation temperature (120 °C). The ozone treatment maintains the tubular shape of the ZnO nanostructures. Photocatalytic activity of the ZnO samples was evaluated using the photo-oxidation of Amaranth as probe reaction, showing a higher activity the ZnO nanotubes obtained from the low-temperature ozone treatment than the high-temperature processed materials. The use of ozone for the template removal reinforces the template-based ALD method to produce inorganic nanotubes.  相似文献   

7.
基于密度泛函第一性原理研究了金属原子Ti在原始、单空位缺陷(SV)、Stone-Wales(SW)缺陷碳纳米管内外的吸附情况.我们的计算结果表明金属Ti原子在缺陷碳纳米管内外结合能的排列顺序为:SVSW-zSW-xpristine(外吸附),SVSW-xSW-zpristine(内吸附).同时,我们通过吸附结构、电子密度和态密度等分析了Ti原子与碳纳米管的作用机制.其中,SV缺陷碳纳米管由于失去一个碳原子而形成了的三个悬键具有很强的结合能力,金属原子Ti在SV缺陷碳纳米管内外的吸附能力都是最强的.对于SW缺陷的碳纳米管,由于缺陷的位置不同,对于金属原子Ti内外吸附的能力也是不同的.因此,缺陷的存在能调节碳纳米管载体对Ti原子的吸附性能.  相似文献   

8.
This paper reports that the multi-walled carbon nanotubes(MWCNT)/nylon-6 (PA6) nanocomposites with different MWCNT loadingshave been prepared by a simple melt-compounding method. Theelectrical, dielectric, and surface wetting properties of theCNT/PA6 composites have been studied. The temperature dependence ofthe conductivity of the CNT/PA6 composite with 10.0 wt{\%} CNTloading ($\sigma _{\rm RT} \sim 10^{-4}$ S/cm) are measured, andafterwards a charge-energy-limited tunnelling model (ln $\sigma (T)\sim T^{-1/2})$ is found. With increasing CNT weight percentage from0.0 to 10.0 wt%, the dielectric constant of the CNT/PA6composites enhances and the dielectric loss tangent increases twoorders of magnitude. In addition, water contact angles of theCNT/PA6 composites increase and the composites with CNT loadinglarger than 2.0 wt%even become hydrophobic. The obtainedresults indicate that the electrical and surface properties of thecomposites have been significantly enhanced by the embedded carbonnanotubes.  相似文献   

9.
This Letter reports the very first vibration analysis of the novel composite nanotubes (NTs) synthesized by coating carbon nanotubes (CNTs) with piezoelectric zinc oxide (ZnO). Timoshenko beam theory was used and modified to account for the interlayer van der Waals (vdW) interaction in the inner CNT and hybrid structures of the NTs. The distinctive vibration behaviours of the NTs were captured and the physics behind these unique features was investigated in terms of the critical role of the vdW interaction and the effect of the ZnO coating layer on the structural rigidity of the NTs. The composite NTs are found to be promising for gigahertz/terahertz electromechanical nanoresonators whose frequency can be even higher than that of the core CNTs.  相似文献   

10.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCCD) is one of the most dangerous compounds that infect the environment and hence its removal is crucial for safety in human life. In this work, we have investigated the interaction of TCDD with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs) by using the density functional theory (DFT) calculations. Our first-principles results have been validated by experiment and also other theoretical values for the similar system. The adsorption energies for TCDD molecule on the BNNTs and CNT are calculated. It was found that TCDD adsorption ability of BNNT is slightly stronger than that of CNT and TCDD molecule prefers to be adsorbed on BNNTs with molecular axis parallel to the tube axis. The results obtained indicate that TCDD is weakly bound to the outer surface of all the considered nanotubes and the obtained adsorption energy values and binding distance are typical for the physisorption. We also evaluated the influence of curvature and introduced defects on the TCDD adsorption ability of BNNTs. Furthermore, we have analyzed the electronic structure and charge population for the energetically most favorable complexes and the results indicate that no significant hybridization between the respective orbitals of the two entities was accomplished.  相似文献   

11.
ABSTRACT

Single-wall carbon nanotubes (CNTs) have been suggested as potential materials for use in next-generation gas sensors. The sidewall functionalisation of CNTs facilitates gas molecule adsorption. In this study, density functional theory (DFT)-based ab initio molecular dynamics simulations are performed for a periodic zigzag single-wall (4,0) CNT surrounded by a monolayer of hydrogen peroxide molecules in an attempt to find conditions that favour sidewall functionalisation. The dependency of dynamics on charge states of the system is examined. It is found negative charges favour reactions that result in the functionalisation of the CNT. First principles molecular dynamics of defect formation yields chemically reasonable structure of stable defects, which can be reproduced in CNTs of any diameter and chirality. The explored hydroxyl and hydroperoxyl defects increase conductivity in a large diameter (10,0) CNT, while decrease conductivities in a small diameter (4,0) CNT.  相似文献   

12.
We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theoretically designed a new sensor for detecting water molecules using single-walled ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H 2 O molecules on the ZnO nanotube surface have been investigated. Our computational results demonstrate that the formation of hydrogen bonding between the H 2 O molecules and the ZnO nanotube, and adsorption energies of the H 2 O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H 2 O molecules adsorbed on its surface are calculated, the results of which showed that the H 2 O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H 2 O molecules by applying bias voltages.  相似文献   

13.
This paper presents the molecular mechanics based finite element modeling of carbon nanotubes (CNTs) and their applications as mass sensors. The beam element with elastic behavior is considered as the bond between the carbon atoms and its properties are obtained using equating continuum and molecular characteristics. The first five natural frequencies of CNTs in cantilever and doubly clamped boundary conditions (BCs) and their corresponding mode shapes are studied in detail. Furthermore, a multilayer perceptron neural network is used to predict the fundamental vibration frequencies of the CNTs with different diameters and lengths. In addition, variations of the natural frequencies of the CNTs with distorted cross sections are investigated. Moreover, the effects of some attached masses with various values on the first three natural frequencies of a considered CNT are studied here.  相似文献   

14.
In this study, high density well aligned ZnO nanotubes were grown on glass via a two-step growth-then-etching by simple and template-free hydrothermal method. We used etching procedure to introduce additional zinc interstitial defects in the ZnO nanotubes. The optical properties of the ZnO nanotubes have been investigated by depth-resolved cathodluminescence spectroscopy (DRCLS) which provides information about the physical origin and growth dependence of optically active defects together with their spatial distribution. The DRCLS study gives clear evidence about the enhancement of zinc interstitial defects which are responsible for the violet and decrease of the DL emission in ZnO nanotubes when compared to the as grown ZnO nanorods. We observed a variation in the zinc interstitials along the nanotube depth.  相似文献   

15.
As the mechanisms of carbon nanotube (CNT) growth becomes known, it becomes important to understand how to implement this knowledge into reactor scale models to optimize CNT growth. In past work, we have reported fundamental mechanisms and competing deposition regimes that dictate single wall carbon nanotube growth. In this study, we will further explore the growth of carbon nanotubes with multiple walls. A tube flow chemical vapor deposition reactor is simulated using the commercial software package COMSOL, and considered the growth of single- and multi-walled carbon nanotubes. It was found that the limiting reaction processes for multi-walled carbon nanotubes change at different temperatures than the single walled carbon nanotubes and it was shown that the reactions directly governing CNT growth are a limiting process over certain parameters. This work shows that the optimum conditions for CNT growth are dependent on temperature, chemical concentration, and the number of nanotube walls. Optimal reactor conditions have been identified as defined by (1) a critical inlet methane concentration that results in hydrogen abstraction limited versus hydrocarbon adsorption limited reaction kinetic regime, and (2) activation energy of reaction for a given reactor temperature and inlet methane concentration. Successful optimization of a CNT growth processes requires taking all of those variables into account.  相似文献   

16.
We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theoretically designed a new sensor for detecting water molecules using single-walled ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H2O molecules on the ZnO nanotube surface have been investigated. Our computational results demonstrate that the formation of hydrogen bonding between the H2O molecules and the ZnO nanotube, and adsorption energies of the H2O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H2O molecules adsorbed on its surface are calculated, the results of which showed that the H2O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H2O molecules by applying bias voltages.  相似文献   

17.
Nanocomposites were prepared using carbon nanotubes (CNTs) in the formulations of fluoroelastomer (FE). Thermogravimetric analysis (TGA) results revealed that CNT improved the thermal properties of FE, resulting in higher amount of FE and char remaining within the temperature range of 520–900 °C, relative to unfilled FE and carbon black (CB)-filled FE. The same results also revealed that more percentage of FE was undegraded or less degraded especially near CNT. Energy dispersive X-ray (EDX) results indicated that the percentage of carbon and fluorine in the residue of TGA scans up to 560 °C of CNT-filled FE (CNT/FE) were higher compared to the CB-filled FE (CB/FE), and CB/FE was higher than FE. EDX results of TGA residue (run up to 900 °C) showed that most of the undegraded FE which was not degraded at temperatures below 560 °C was degraded from 560 °C to 900 °C in both CNT/FE and CB/FE, with the char in CNT/FE being more than that in CB/FE. Residue of samples after TGA scans up to 900 °C indicated that, Zn did not undergo any reaction with CNT in the CNT/FE. In CB/FE, some percentage of ZnO reacted with carbon. EDX analysis of thermal aged specimens under air showed that with increasing aging time, more percentage of C, O, and F were lost from the surface of filler/FE and FE. The order of element loss is: CNT/FE < FE < CB/FE.  相似文献   

18.
19.
The electronic transport properties of single-walled ZnO nanotubes with different chiralities are investigated by nonequilibrium Green's function combined with density functional theory. In this paper we consider three representative ZnO nanotubes, namely (3, 3) armchair, (5, 0) zigzag, and (4, 2) chiral, with a similar diameter of about 5.4 Å. Short nanotubes exhibit good conductance behavior. As the tube length increases, the conductance decreases at low bias and the nanotubes indicate semiconducting behavior. The current-voltage characteristics of the nanotubes longer than 3 nm depend weakly on the length of the tubes. The armchair and chiral ZnO nanotubes with the same length and diameter have almost overlapped current-voltage curves. The electron transport behaviors are analyzed in terms of the transmission spectra, density of states and charge population of these nanotubes. The results indicate that the resonant peaks above the Fermi level are responsible for electric currents. However, the zigzag ZnO nanotubes exhibit asymmetric current-voltage curves attributed to the built-in polarization field and give larger current than the armchair and chiral nanotubes at the same bias. The features explored here strongly suggest that the ZnO nanotubes are stable, flexible structures, which are valuable in Nano-Electromechanical System.  相似文献   

20.
The effect of the induced vibrations in the carbon nanotubes (CNTs) arising from the internal fluid flow is a critical issue in the design of CNT-based fluidic devices. In this study, in-plane vibration analysis of curved CNTs conveying fluid embedded in viscoelastic medium is investigated. The CNT is modeled as a linear elastic cylindrical tube where the internal moving fluid is characterized by steady flow velocity and mass density of fluid. A modified-inextensible theory is used in formulation and the steady-state initial forces due to the centrifugal and pressure forces of the internal fluid are also taken into account. The finite element method is used to discretize the equation of motion and the frequencies are obtained by solving a quadratic eigenvalue problem. The effects of CNT opening angle, the elastic modulus and the damping factor of the viscoelastic surrounded medium and fluid velocity on the resonance frequencies are elucidated. It is shown that curved CNTs are unconditionally stable even for a system with sufficiently high flow velocity. The most results presented in this investigation have been absent from the literature for fluid-induced vibration of curved CNTs embedded in viscoelastic foundations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号