首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed singlet and triplet excitation energies in oligothiophenes (up to five rings) using time-dependent density-functional theory (TD-DFT) with different exchange-correlation functionals and compared them with results from the approximate coupled-cluster singles and doubles model (CC2) and experimental data. The excitation energies have been calculated in geometries obtained by TD-DFT optimization of the lowest excited singlet state and in the ground-state geometries of the neutral and anionic systems. TD-DFT methods underestimate photoluminescence energies but the energy difference between singlet and triplet states shows trends with the chain-length similar to CC2. We find that the second triplet excited state is below the first singlet excited state for long oligomers in contrast with the previous assignment of Rentsch et al. (Phys.Chem. Chem. Phys. 1999, 1, 1707). Their photodetachment photoelectron spectroscopy measurements are better described by considering higher triplet excited states.  相似文献   

2.
The electronic excited states of the [COH2]+ system have been studied in order to establish their role in the dynamics of the C+ + H2O-->[COH]+ +H reaction, which is a prototypical ion-molecule reaction. The most relevant minima and saddle points of the lowest excited state have been determined and energy profiles for the lowest excited doublet and quartet electronic states have been computed along the fragmentation and isomerization coordinates. Also, nonadiabatic coupling strengths between the ground and the first excited state have been computed where they can be large. Our analysis suggests that the first excited state could play an important role in the generation of the formyl isomer, which has been detected in crossed beam experiments [D. M. Sonnenfroh et al., J. Chem. Phys. 83, 3985 (1985)], but could not be explained in quasiclassical trajectory computations [Y. Ishikawa et al., Chem. Phys. Lett. 370, 490 (2003); J. R. Flores, J. Chem. Phys. 125, 164309 (2006)].  相似文献   

3.
The proton‐transfer reaction in a model aromatic Schiff base, salicylidene methylamine (SMA), in the ground and in the lowest electronically‐excited singlet states, is theoretically analyzed with the aid of second‐order approximate coupled‐cluster model CC2, time‐dependent density functional theory (TD‐DFT) using the Becke, three‐parameter Lee–Yang–Parr (B3LYP) functional, and complete active space perturbation theory CASPT2 electronic structure methods. Computed vertical‐absorption spectra for the stable ground‐state isomers of SMA fully confirm the photochromism of SMA. The potential‐energy profiles of the ground and the lowest excited singlet state are calculated and four photophysically relevant isomeric forms of SMA; α, β, γ, and δ are discussed. The calculations indicate two S1/S0 conical intersections which provide non‐adiabatic gates for a radiationless decay to the ground state. The photophysical scheme which emerges from the theoretical study is related to recent experimental results obtained for SMA and its derivatives in the low‐temperature argon matrices (J. Grzegorzek, A. Filarowski, Z. Mielke, Phys. Chem. Chem. Phys. 2011 , 13, 16596–16605). Our results suggest that aromatic Schiff bases are potential candidates for optically driven molecular switches.  相似文献   

4.
Neutral/zwitterionic form equilibrium, excited state wave functions, absorption and emission spectra of kynurenine (KN) in various solvents (water, methanol, ethanol, and dimethylsulfoxide) have been studied theoretically. The ground electronic state geometries have been optimized by density functional theory methods; the geometries of the first two singlets excited electronic states have been optimized using the CASSCF technique. The influence of the solvent was taken into account by the calculation of the solvation free energies using the Polarizable Continuum Model (PCM). The spectra of electronic absorption and fluorescence emission have been calculated by the CS‐INDO S‐CI and SDT‐CI methods [Momicchioli, Baraldi, and Bruni, Chem Phys, 1983, 82, 229]. The calculated data reproduce the experimental positions of maxima and the solvent‐induced shifts of the absorption and emission bands well. The energy gap between the two lowest excited states of KN increases from aprotic to protic solvents. This fact suggests that the “proximity effect” cannot be responsible for the ultrafast decay of KN fluorescence in protic solvents. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
The low-lying excited singlet states of the keto, enol, and keto-imine tautomers of cytosine have been investigated employing a combined density functional/multireference configuration interaction (DFT/MRCI) method. Unconstrained geometry optimizations have yielded out-of-plain distorted structures of the pi --> pi and n --> pi excited states of all cytosine forms. For the keto tautomer, the DFT/MRCI adiabatic excitation energy of the pi --> pi state (4.06 eV including zero-point vibrational energy corrections) supports the resonant two-photon ionization (R2PI) spectrum (Nir et al. Phys. Chem. Chem. Phys. 2002, 5, 4780). On its S1 potential energy surface, a conical intersection between the 1pipi state and the electronic ground state has been identified. The barrier height of the reaction along a constrained minimum energy path amounts to merely 0.2 eV above the origin and explains the break-off of the R2PI spectrum. The 1pipi minimum of the enol tautomer is found at considerably higher excitation energies (4.50 eV). Because of significant geometry shifts with respect to the ground state, long vibrational progressions are expected, in accord with experimental observations. For the keto-imine tautomer, a crossing of the 1pipi potential energy surface with the ground-state surface has been found, too. Its n --> pi minimum (3.27 eV) is located well below the conical intersection between the pi --> pi and S0 states, but it will be difficult to observe because of its small transition moment. The identified conical intersections of the pi --> pi excited states of the keto cytosine tautomers are made responsible for the ultrafast decay to the electronic ground states and thus may explain their subpicoseconds lifetimes.  相似文献   

6.
The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.  相似文献   

7.
A new general and effective procedure to compute Franck-Condon spectra from first principles is exploited to elucidate the subtle features of the vibrationally resolved optical spectra of anisole. Methods based on the density functional theory and its time-dependent extension for electronic excited states [B3LYP6-311+G(d,p) and TD-B3LYP6-311+G(d,p)] have been applied to geometry optimizations and harmonic frequency calculations. Perturbative anharmonic frequencies [J. Chem. Phys. 122, 014108 (2005)] have been calculated for the ground state, and the Duschinsky matrix elements have been used to evaluate the corresponding anharmonic corrections for the first excited electronic state. The relative energetics of both electronic states has been refined by single point calculations at the coupled clusters (CC) level with the aug-cc-pVDZ basis set. Theoretical spectra have been evaluated using a new optimized implementation for the effective computation of Franck-Condon factors. The remarkable agreement between theoretical and experimental spectra allowed for revision of some assignments of fundamental vibrations in the S(1) state of anisole.  相似文献   

8.
In this paper, the ground and excited states of N2O2 were studied at the multireference configuration interaction (MRCI) level of theory with Dunning's [J. Chem. Phys. 90, 1007 (1985); 96, 6796 (1992)] correlation consistent basis sets augo-cc-pVDZ and aug-cc-pVTZ. The geometry optimizations were performed for the ground state of N2O2. The vertical excitation energies and transition moments were calculated for the low-lying singlet states of N2O2 including the lowest three 1A1 states, two 1B1 states, one 1B2 state, and two 1A2 states at the MRCI level of theory with Dunning's correlation consistent basis sets aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ. Furthermore, for the first time, the potential energy curves were calculated at the complete active space self-consistent-field and MRCI levels of theory for as many as 12 N2O2 singlet electronic states along the N-N distance. The dissociation asymptotes of these 12 N2O2 singlet electronic states were discussed.  相似文献   

9.
Time-Dependent Density Functional Theory (TD-DFT) computations, with M05-2X and PBE0 functionals, have been employed for a detailed study of the Electron-Driven Proton-Transfer (PT) processes in an Adenine-Thymine Watson-Crick Base Pair in the gas phase and in solution, with the bulk solvent described by the polarizable continuum model. In the gas phase, TD-DFT computations predict that the Adenine → Thymine Charge Transfer (CT) excited state undergoes a barrierless PT reaction, in agreement with CC2 computations (S. Perun, A. Sobolewski, W. Domcke, J. Phys. Chem. A, 2006, 110, 9031.). The good agreement between the TD-DFT approach and CC2 results validates the former for the studies of excited state properties, excited state proton transfer reaction, and deactivation mechanisms in the DNA base pairs. Next, it is shown that inclusion of solvent effects significantly influences the possibility of both barrier-less excited state proton transfer and radiation-less deactivation through conical intersection with the ground state, affecting the energy of the CT excited state in the Franck-Condon region, the energy barrier associated to the PT process and the energy gap with the ground electronic state. These findings clearly indicate that environmental effects, with a special attention to proper treatment of dynamical solvation effects, have to be included for reliable computational analysis of photophysical and photochemical processes occurring in condensed phases.  相似文献   

10.
A coupled‐cluster (CC) response functions theory for molecular solutes described with the framework of the polarizable continuum model (PCM) is presented. The theory is an extension to the dynamical molecular properties of the PCM‐CC analytic derivatives recently proposed for the calculation of static molecular properties (Cammi, Jr Chem Phys 2009, 131, 164104). The theory is presented for linear and quadratic response functions, and the operative expressions of these response functions can accurately account for the nonequilibrium solvation effects. The excitation energies and transition moments of the solvated chromophores have been determined from the linear response functions. Accurate expressions for gradients of excitation energies for the evaluation of the excited state properties have been also discussed. © 2012 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

11.
12.
Recently, we have proposed a scheme for the calculation of nonadiabatic couplings and nonadiabatic coupling vectors within linear response time-dependent density functional theory using a set of auxiliary many-electron wavefunctions [I. Tavernelli, E. Tapavicza, and U. Rothlisberger, J. Chem. Phys. 130, 124107 (2009)]. As demonstrated in a later work [I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009)], this approach is rigorous in the case of the calculation of nonadiabatic couplings between the ground state and any excited state. In this work, we extend this formalism to the case of coupling between pairs of singly excited states with the same spin multiplicity. After proving the correctness of our formalism using the electronic oscillator approach by Mukamel and co-workers [S. Tretiak and S. Mukamel, Chem. Rev. (Washington, D.C.) 102, 3171 (2002)], we tested the method on a model system, namely, protonated formaldimine, for which we computed S(1)/S(2) nonadiabatic coupling vectors and compared them with results from high level (MR-CISD) electronic structure calculations.  相似文献   

13.
The interaction of He with Br2 in electronically excited B 3Piu state is investigated using spin-unrestricted single and double coupled-cluster approach with noniterative perturbative treatment of triple excitations. Internal electrons of the Br atom are described by effective core pseudopotentials. The validity of this approach is analyzed by comparing the lowest 2Sigma+ and 2Pi electronic states of the HeBr molecule with those obtained in all electron calculations [J. Chem. Phys. 115, 10438 (2001)]. In this context, we examine the performance of different basis sets and saturation with bond functions. The comparison of theoretical blue-shifts with the experiment provides confidence about the present ab initio calculations. In addition, He-Br results of ab initio calculations at the same level are used to obtain approximate He-Br2 (3Piu) interactions in the framework of the diatomics-in-molecule first order perturbation theory (IDIM-PT1) [J. Chem. Phys. 104, 9913 (1996)]. Overall, the IDIM-PT1 model results show a good agreement with the ab initio ones, being the main difference the sensitivity to the elongation of the Br-Br bond.  相似文献   

14.
The complete angular momentum distributions and vector correlation coefficients (orientation and alignment) of ground state I((2)P(32)) and excited state I((2)P(12)) atoms resulting from the photodissociation of HI have been computed as a function of photolysis energy. The orientation and alignment parameters a(Q) ((K))(p) that describe the coherent and incoherent contributions to the angular momentum distributions from the multiple electronic states accessed by parallel and perpendicular transitions are determined using a time-dependent wave packet treatment of the dissociation dynamics. The dynamics are based on potential energy curves and transition dipole moments that have been reported previously [R. J. LeRoy, G. T. Kraemer, and S. Manzhos, J. Chem. Phys. 117, 9353 (2002)] and used to successfully model the scalar (total cross section and branching fraction) and lowest order vector (anisotropy parameter beta) properties of the photodissociation. Predictions of the a(Q) ((K))(p), parameters for the isotopically substituted species DI are reported and contrasted to the analogous HI results. The resulting polarization for the corresponding H/D partners are also determined and demonstrate that both H and D atoms produced can be highly spin polarized. Comparison of these predictions for HI and DI with experimental measurement will provide the most stringent test of the current model for the electronic structure and the interpretation of the dissociation based on noncoupled excited state dynamics.  相似文献   

15.
In connection with the recent study of the ground electronic state of the LiH2(+) molecular ion (Kraemer, W. P.; Spirko, V. Chem. Phys. 2006, 330, 190), the adiabatic three-dimensional double-minimum potential enery surface of the first excited electronic state was evaluated, including its two lowest atom-diatom dissociation channels as well as the three-atom complete fragmentation asymptote. Applying the Sutcliffe-Tennyson Hamiltonian for triatomic molecules, the levels of all bound vibrational states and the levels of the states localized in the two energy minimum regions were separately determined. The validity of statistical methods such as the density of states approach and the nearest-neighbor level spacing distribution (NNSD) was tested for the light LiH2(+) ion. Special effort was put into investigating possible effects of a tunnelling motion across the proton-transfer barrier on the vibrational level pattern using the NNSD approach.  相似文献   

16.
We present a combined density functional theory (DFT)/time-dependent density functional theory (TDDFT) study of the geometry, electronic structure, and absorption and emission properties of the tetranuclear "cubane" Cu4I4py4 (py = pyridine) system. The geometry of the singlet ground state and of the two lowest triplet states of the title complex were optimized, followed by TDDFT excited-state calculations. This procedure allowed us to characterize the nature of the excited states involved in the absorption spectrum and those responsible for the dual emission bands observed for this complex. In agreement with earlier experimental proposals, we find that while in absorption the halide-to-pyridine charge-transfer excited state (XLCT*) has a lower energy than the cluster-centered excited state (CC*), a strong geometrical relaxation on the triplet cluster-centered state surface leads to a reverse order of the excited states in emission.  相似文献   

17.
Exploratory electronic structure calculations have been performed with the CC2 (simplified singles and doubles coupled-cluster) method for two conformers of the adenine (A)-thymine (T) base pair, with emphasis on excited-state proton-transfer reactions. The Watson-Crick conformer and the most stable (in the gas-phase) conformer of the A-T base pair have been considered. The equilibrium geometries of the ground state and of the lowest excited electronic states have been determined with the MP2 (second-order M?ller-Plesset) and CC2 methods, respectively. Vertical and adiabatic excitation energies, oscillator strengths, and dipole moments of the excited states are reported. Of particular relevance for the photochemistry of the A-T base pair are optically dark (1)pipi* states of charge-transfer character. Although rather high in energy at the ground-state equilibrium geometry, these states are substantially lowered in energy by the transfer of a proton, which thus neutralizes the charge separation. A remarkable difference of the energetics of the proton-transfer reaction is predicted for the two tautomers of A-T: in the Watson-Crick conformer, but not in the most stable conformer, a sequence of conical intersections connects the UV-absorbing (1)pipi* state in a barrierless manner with the electronic ground state. These conical intersections allow a very fast deactivation of the potentially reactive excited states in the Watson-Crick conformer. The results provide evidence that the specific hydrogen-bonding pattern of the Watson-Crick conformer endows this structure with a greatly enhanced photostability. This property of the Watson-Crick conformer of A-T may have been essential for the selection of this species as carrier of genetic information in early stages of the biological evolution.  相似文献   

18.
The velocity distributions of the laser-induced desorption of NO molecules from an epitaxially grown film of NiO(100) on Ni(100) have been studied [Mull et al., J. Chem. Phys., 1992, 96, 7108]. A pronounced bimodality of velocity distributions has been found, where the NO molecules desorbing with higher velocities exhibit a coupling to the rotational quantum states J. In this article we present simulations of state resolved velocity distributions on a full ab initio level. As a basis for this quantum mechanical treatment a 4D potential energy surface (PES) was constructed for the electronic ground and a representative excited state, using a NiO5Mg(18+)13 cluster. The PESs of the electronic ground and an excited state were calculated at the CASPT2 and the configuration interaction (CI) level of theory, respectively. Multi-dimensional quantum wave packet simulations on these two surfaces were performed for different sets of degrees of freedom. Our key finding is that at least a 3D wave packet simulation, in which the desorption coordinate Z, polar angle theta and lateral coordinate X are included, is necessary to allow the simulation of experimental velocity distributions. Analysis of the wave packet dynamics demonstrates that essentially the lateral coordinate, which was neglected in previous studies [Klüner et al., Phys. Rev. Lett. 1998, 80, 5208], is responsible for the experimentally observed bimodality. An extensive analysis shows that the bimodality is due to a bifurcation of the wave packet on the excited state PES, where the motion of the molecule parallel to the surface plays a decisive role.  相似文献   

19.
Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH2C(O)Cl was prepared in its ground electronic state (S0) and excited with a laser at 248 nm to its first excited singlet state (S1). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S1 and S2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S0 and S1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is also supported by the low values of the diabatic couplings on the C-Br scission reaction path. The methodology established in the present study will be used for the construction of global potential energy surfaces suitable for multidimensional dynamics simulations to test these preliminary interpretations.  相似文献   

20.
This article presents the results of the first quantum simulations of the electronic flux density (j(e)) by the "coupled-channels" (CC) theory, the fundamentals of which are presented in the previous article [Diestler, D. J. J. Phys. Chem. A 2012, DOI: 10.1021/jp207843z]. The principal advantage of the CC scheme is that it employs exclusively standard methods of quantum chemistry and quantum dynamics within the framework of the Born-Oppenheimer approximation (BOA). The CC theory goes beyond the BOA in that it yields a nonzero j(e) for electronically adiabatic processes, in contradistinction to the BOA itself, which always gives j(e) = 0. The CC is applied to oriented H(2)(+) vibrating in the electronic ground state ((2)Σ(g)(+)), for which the nuclear and electronic flux densities evolve on a common time scale of about 22 fs per vibrational period. The system is chosen as a touchstone for the CC theory, because it is the only one for which highly accurate flux densities have been calculated numerically without invoking the BOA [Barth et al, Chem. Phys. Lett. 2009, 481, 118]. Good agreement between CC and accurate results supports the CC approach, another advantage of which is that it allows a transparent interpretation of the temporal and spatial properties of j(e).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号