首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The external and internal surface area of the calcium aluminum double hydroxide [Ca2Al(OH)6] NO3 ⋅ 2H2O were hydrophobized by the anionic surfactants sodium dodecylsulfate and sodium dodecyl-benzene sulfonate. The adsorption behavior towards liquid mixtures (benzene/n-heptane and n-propanol/ toluene) was studied by determining the surface excess adsorption isotherms, the heats of immersion in these liquids, and the basal spacing, i.e. the expansion of the interlayer space. Both hydrophobic layered double hydroxides (LDHs) adsorbed n-hep-tane, benzene, toluene, and n-pro-panol between the layers with considerable increase of the basal spacing. Interlamellar swelling of the hydrophobizised LDHs in n-heptane was fundamentally different to the behavior of hydrophobized 2 : 1 clay minerals (smectites, vermiculites). The surface excess isotherms for benzene/ heptane mixtures were U-shaped and indicate preferential adsorption of benzene. Dodecylbenzene sulfonate double hydroxide preferentially adsorbed propanol from n-propanol/ toluene mixtures but the dodecyl-sulfate derivative adsorbed both compounds. Received: 23 January 1997 Accepted: 10 February 1997  相似文献   

2.
Co-containing layered double hydroxides at different pH have been prepared, and aged following different routes. The solids prepared have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric and differential thermal analyses (both in nitrogen and in oxygen), FT-IR and Vis-UV spectroscopies, temperature-programmed reduction and surface area assessment by nitrogen adsorption at −196 °C. The best conditions found to preserve the cobalt species in the divalent oxidation state are preparing the samples at controlled pH, and then submit them to ageing under microwave irradiation.  相似文献   

3.
The layered double hydroxide Mg2Al(OH)6(C12H25SO4) was delaminated to give high levels of inclusion in acrylate monomers; subsequent polymerisation of the monomers containing the LDH dispersion gave polyacrylates with the inorganic component still in the delaminated form.  相似文献   

4.
以新制备的Mg(OH)_2和Al(OH)_3滤饼与对苯二甲酸通过水热反应制备了对苯二甲酸插层水滑石(TALDHs).使用X射线衍射(XRD)、热重-差热分析、扫描电镜(SEM)等技术对TA-LDHs与碳酸根型水滑石(CO3-LDHs)进行对比研究,结果显示,对苯二甲酸离子成功插入到LDHs层间,产物结构完整、晶相单一,所制得的TA-LDHs为片状.CO3-LDHs和TA-LDHs分别作为纳米填料,以两种不同的添加方式制备聚对苯二甲酸乙二醇酯(PET)/LDHs纳米复合材料.对复合材料进行XRD和SEM研究,结果表明在酯交换反应前添加2%TA-LDHs所制备的PET/LDHs纳米复合材料的层板被部分剥离,分散性最好.  相似文献   

5.
Polystyrene (PS)/layered double hydroxides (LDHs) composites were prepared for the first time from LDHs aqueous suspension and PS emulsion by electrostatic assembly. The morphology characterization based on XRD and TEM showed that the LDHs were partially exfoliated in PS matrix. By using a reactive emulsifier, i.e., sodium 2-hydroxyl-3-(methacryloxy)propane-1-sulfonate (HMPS), which was able to copolymerize with styrene, a strong polymer-LDHs platelets interaction was achieved. The glass transition temperature (T g ) of the composites was measured by DSC and DMA. The results showed that a strong polymer-LDHs platelets interaction played a dominant role in affecting the mobility of polymer chains, i.e., the T g . With a strong interaction, PS-HMPS/LDHs composite showed a significant enhancement in T g while a slight increase in T g was observed for PS-SDS (PS prepared by emulsion polymerization using sodium dodecyl sulfate as emulsifier)/LDHs composite with a weak interaction. The addition of LDHs improved the thermal stability of PS, and the improvement depended on the dispersion of the LDHs platelets.  相似文献   

6.
Layered double hydroxides (LDHs) have shown great promise as anion getters. In this paper, we demonstrate that the sorption capability of a LDH for a specific oxyanion can be greatly increased by appropriately manipulating material composition and structure. We have synthesized a large set of LDH materials with various combinations of metal cations, interlayer anions, and molar ratios of divalent cation M(II) to trivalent cation M(III). The synthesized materials have then been tested systematically for their sorption capabilities for pertechnetate (TcO(-)(4)). It is discovered that for a given interlayer anion (either CO(2-)(3) or NO(-)(3)) the Ni-Al LDH with a Ni/Al ratio of 3:1 exhibits the highest sorption capability among all the materials tested. The sorption of TcO(-)(4) on M(II)-M(III)-CO(3) LDHs may be dominated by the edge sites of LDH layers and correlated with the basal spacing d(003) of the materials, which increases with the decreasing radii of both divalent and trivalent cations. The sorption reaches its maximum when the layer spacing is just large enough for a pertechnetate anion to fit into a cage space among three adjacent octahedra of metal hydroxides at the edge. Furthermore, the sorption is found to increase with the crystallinity of the materials. For a given combination of metal cations and an interlayer anion, the best crystalline LDH material is obtained generally with a M(II)/M(III) ratio of 3:1. Synthesis with readily exchangeable nitrate as an interlayer anion greatly increases the sorption capability of a LDH material for pertechnetate. The work reported here will help to establish a general structure-property relationship for the related layered materials.  相似文献   

7.
The preparation of new layered double hydroxides/unsaturated polyester (LDH/UP) nanocomposites was performed and the effect of LDH on the resin properties was studied. Two different organo-LDHs have been prepared, adipate-LDH (A-LDH) and 2-methyl-2-propene-1-sulfonate-LDH (S-LDH); in order to evaluate the influence of these nanofillers, samples with two different concentrations were dispersed in the matrix. The physical, thermal, mechanical and fire reaction properties of nanocomposites were studied. Intercalated layered structures were observed for the different organo-LDH loadings (1 and 5 wt%). Mechanical properties studied under flexural tests show that incorporation of organo-LDH in the resin reduces the flexural strength of polyester resin while the flexural modulus is unchanged for the S-LDH/UP composites and increased with 1 wt% of A-LDH. Adding 1 wt% of A-LDH to the resin produces an important reduction on the flexural strength, but an increase of the flexural modulus. The study of fire reaction properties, using cone calorimeter, suggested a significant reduction in the UP flammability, by 46 and 32%, by incorporating 1 wt% of A-LDH and 5 wt% S-LDH, respectively. Mass loss curves show enhanced char formation with the different loads tested while the amount of evolved smoke remains quite unchanged.  相似文献   

8.
Fracture behaviour of polyethylene (PE)/Mg-Al layered double hydroxide (LDH) based nanocomposites has been studied by essential work of fracture (EWF) approach. Transmission electron microscopy (TEM and X-ray diffraction (XRD) analysis have been used to investigate the morphological features of these nanocomposites. A maximum in the non-essential work of fracture was observed at 5 wt.% LDH demonstrating enhanced resistance to crack propagation compared to pure PE. Morphological analyses of the nanocomposites show that the dispersed LDH platelets are partially exfoliated and also forms clusters with polymer chains remaining entrapped within. Rheological analyses show that the typical low-frequency Newtonian flow behaviour, as observed in unfilled polymer, shifts to shear-thinning behaviour with increasing LDH concentration. At 5 wt.% LDH a ductile-to-brittle transition has been observed. Fracture surface investigation by SEM reveals the arresting of the plastic crack growth by the LDH particle clusters, which is more significant at 5 wt.% LDH content. At higher LDH concentrations, the number of such particle clusters increases causing decrease in the average distance between them. As a result large-scale plastic deformation of the matrix at higher LDH concentration is effectively arrested favouring small strain failure and this in turn reaffirms the possible existence of a ductile-to-brittle transition. The study in general reveals that the resistance against crack initiation (essential work of fracture: EWF) and crack propagation (non-essential work of fracture: βwp) in these nanocomposites are structurally correlated with the matrix behaviour and the morphology (state of LDH particle dispersion) respectively.  相似文献   

9.
Novel nanocomposites from poly(L ‐lactide) (PLLA) and an organically modified layered double hydroxide (LDH) were prepared using the melt‐mixing technique. The structure and crystallization behavior of these nanocomposites were investigated by means of wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). WAXD results indicate that the layer distance of dodecyl sulfate‐modified LDH (LDH‐DS) is increased in the PLLA/LDH composites, compared with the organically modified LDH. TEM analysis suggests that the most LDH‐DS layers disperse homogenously in the PLLA matrix in the nanometer scale with the intercalated or exfoliated structures. It was found that the incorporation of LDH‐DS has little or no discernable effect on the crystalline structure as well as the melting behavior of PLLA. However, the crystallization rate of PLLA increases with the addition of LDH‐DS. With the incorporation of 2.5 wt % LDH‐DS, the PLLA crystallization can be finished during the cooling process at 5 °C/min. With the addition of 5 wt % LDH‐DS, the half‐times of isothermal melt‐crystallization of PLLA at 100 and 120 °C reduce to 44.4% and 57.0% of those of the neat PLLA, respectively. POM observation shows that the nucleation density increases and the spherulite size of PLLA reduces distinctly with the presence of LDH‐DS. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2222–2233, 2008  相似文献   

10.
The synergistic effects of zinc oxide (ZnO) with layered double hydroxides (LDH) in ethylene vinyl acetate copolymer/LDH (EVA/LDH) composites have been studied using thermal analysis (TG), limiting oxygen index (LOI), UL-94 tests, and cone calorimeter test (CCT). The results from the UL-94 tests show that the ZnO can also act as flame retardant synergistic agents in the EVA/LDH composites. The CCT data indicated that the addition of ZnO in EVA/LDH system can greatly reduce the heat release rate. The TG data show that the ZnO can increase the thermal degradation temperature and the charred residues after burning.  相似文献   

11.
Layered double hydroxides (LDHs) with the hydrotalcite type structure and a Mg:Al ratio of two have been prepared, with salicylate or naproxen in the interlayer. Two synthetic routes have been used: reconstruction from a mildly calcined hydrotalcite-CO3 precursor, and a coprecipitation method with chlorides of the metals. The solids have been characterized using several physicochemical techniques, i.e., powder X-ray diffraction, FTIR and 13C CP/MAS NMR spectroscopies and thermal analysis (thermogravimetric and differential thermal analyses). The gallery height determined is in all cases larger than the size of the drug, 11.5 Å for salicylate and 15.8 and 16.6 Å for naproxen, depending on the specific synthesis route followed. Experimental data suggest the anion molecules form a tilted bilayer, with the carboxylate groups pointing towards the brucite-like layers. The solids are stable up to 230 °C and their evolution from 350 °C upwards is very similar to that observed for a carbonate-containing hydrotalcite, forming mostly amorphous solids with a large specific surface area.  相似文献   

12.
The hydrotalcite-like layered double hydroxide (LDH) of Mg with Al shows dramatic changes in the peaks arising from the (h0l)/(0kl) family of reflections in its powder X-ray diffraction pattern during thermal treatment. DIFFaX simulations show that these changes arise due to the transformation of the disordered 3R1 polytype into the 1H polytype on dehydration. The 1H polytype is an essential precursor to the decomposition reaction, which results in the formation of an oxide residue with the rock salt structure. In contrast, the LDH of Zn with Al does not undergo any such transformation, retaining the structure of the 3R1 polytype until decomposition into the oxide residue. Given the poor octahedral site preference of the Zn2+ ion, the 1H polytype is neither structurally stable nor is it topochemically necessary for the thermal decomposition of the Zn-Al LDH, the end product of the decomposition reaction being an oxide with the wurtzite structure.  相似文献   

13.
在乙醇-水混合体系中,采用改进的共沉淀法将甲氨蝶呤(MTX)插层组装到锌铝类水滑石(LDHs)层间形成了MTX/Zn-Al-LDHs纳米复合物,考察了不同Zn2+/Al3+/MTX摩尔比(R值)对合成MTX/LDHs复合物性质的影响.利用X-射线衍射(XRD)、傅里叶变换红外(FT-IR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、原子力显微镜(AFM)和紫外-可见光谱(UV-Vis)等表征了复合物的结构和形貌.结果表明,粒子的尺寸随MTX加入量的增大而减小;粒子沿a-b轴方向的生长速率比沿c轴方向的生长速率快.在磷酸缓冲液中考察了插层药物的控释性能并进行了动力学拟合,结果表明,采用modified Freundlich模型和parabolic diffusion模型分段拟合可较好地描述样品的释药过程.最后,采用MTT法探究了插层药物对肺癌细胞A549增殖的抑制作用,研究表明,复合物粒径越小,MTX/LDHs对癌细胞增殖的抑制作用越大.  相似文献   

14.
Layered double hydroxides (LDHs, or hydrotalcites) with Mg(2+) and Al(3+) cations in the mixed metal hydroxide layer and paratungstate anions in the interlayer have been prepared. Different methods have been followed: anion exchange with Mg,Al LDHs originally containing nitrate or adipate, reconstruction of the LDH structure from a mildly calcined Mg(2)Al-CO(3) LDH, and coprecipitation. In all cases, the tungsten precursor salt was (NH(4))(10)H(2)W(12)O(42). The prepared solids have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy, thermogravimetric (TG) and differential thermal (DTA) analyses, scanning electron microscopy (SEM) with EDX (energy-dispersive X-ray analysis), and nitrogen adsorption at -196 degrees C for surface area and surface texture. Most of the synthesis methods used, especially anion exchange starting from a Mg(2)Al-NO(3) precursor at low temperature and short reaction times, lead to formation of a hydrotalcite with a gallery height of 9.8 A; increasing the reaction temperature to 70-100 degrees C and maintaining short contact times leads to a solid with a gallery height of 7.8 A. Both phases have been identified as a result of the intercalation of W(7)O(24)(6)(-) species in different orientations in the interlayer space. If the time of synthesis or the temperature is increased, a more stable phase, with a gallery height of 5.2 A corresponding to a solid with intercalated W(7)O(24)(6)(-), is formed, probably with grafting of the interlayer anion on the brucite-like layers. All systems are microporous. Calcination at 300 degrees C leads to amorphous species, and crystallized MgWO(4) is observed at 700 degrees C.  相似文献   

15.
Nanocomposites of poly(p-dioxanone) (PPDO) with unmodified and organically modified layered double hydroxide (LDH) have been prepared by melt extrusion method. Dodecyl sulfate was used as organic modifier. The morphology of nanocomposites was analyzed by X-ray diffraction and transmission electron microscopy and their thermal properties by differential scanning calorimetry and thermogravimetric analysis. It has been found that the organic modifier decisively influences the nanocomposite morphology, resulting in a higher level of exfoliation. In addition, the glass transition temperature of nanocomposites was slightly higher than in case of unfilled PPDO. Moreover, the crystallization was delayed by LDH incorporation. The above behavior was ascribed to interactions between carbonyl groups of polymer matrix and hydroxyl groups of LDH, as supported by Fourier transformed infrared analysis. Interestingly, two different crystallization processes have been observed in the nanocomposite of PPDO and organically modified LDH. Unmodified and organo-modified LDH, practically did not alter the final melting point of PPDO. However, the thermal decomposition behavior was clearly influenced by the morphology exhibited by nanocomposites.  相似文献   

16.
Mg/Al layered double hydroxides (LDH) containing KI were synthesized and tested as basic heterogeneous catalysts for transesterification of sunflower oil, in order to obtain biodiesel. The process was carried out using reflux with 15:1 molar ratio of methanol to sunflower oil, and catalyst concentration of 2 mass%. The characterization of sunflower oil and biodiesel was accomplished according to ASTM and EN standard methods. The gas chromatographic and TG/DTG profiles were evaluated, and the results of yield and conversions were compared. The gas chromatographic analysis showed that the catalysts were effective in converting vegetable oil into biodiesel, specially using LDH catalysts modified with KI and molar ratio Mg/Al = 1, with conversions higher than 99 % indicating the strong influence of the chemical composition and controlled basicity, due to the presence of potassium in the structure of the catalyst.  相似文献   

17.
trans-RhCl(CO)(TPPTS)2 (TPPTS=tris(m-sulfonatophenyl)phosphine) has been intercalated into Zn-Al layered double hydroxides (LDHs) by the method of ion exchange. The structure, composition and thermal stability of the composite material have been characterized by powder X-ray diffraction, Fourier transform infrared and 31P solid-state magic-angle spinning nuclear magnetic resonance spectroscopy, elemental analysis, thermogravimetry, and differential thermal analysis. The geometry of trans-RhCl(CO)(TPPTS)2 was fully optimized using the PM3 semiempirical molecular orbital method, and a schematic model for the intercalated species has been proposed. The thermal stability of trans-RhCl(CO)(TPPTS)2 is significantly enhanced by intercalation, which suggests that such materials may have prospective application as the basis of a supported catalyst system for the hydroformylation of higher olefins.  相似文献   

18.
By using acetate-buffer (sodium acetate and acetic acid)/NaCl mixed solutions, the deintercalation of carbonate ions (CO(2-)3) was conducted on MgAl--LDHs at different Mg/Al ratios-LDH2 (LDH with Mg/Al approximately 2) and LDH3 (LDH with Mg/Al approximately 3). When only an acetate-buffer solution was used, decarbonation did not take place even if the buffer solution was made acidic enough to dissolve LDH itself; however, the addition of NaCl to the buffer solution caused deintercalation of the carbonate ions from the MgAl-LDHs and the reaction was conducted without any morphological and weight change at 25 degrees C. Under the optimum conditions, full decarbonation was attained for the two MgAl-LDHs in minutes, and the obtained LDHs contained Cl(-) in the interlayer space without incorporation of any acetate anions due to their extremely low anion selectivity of acetate ion. The allowable range for the concentration of the decarbonation solution is wide, and the change in pH due to the decarbonation reaction is slight because of the buffering effect. The decarbonation was affected by the Mg/Al ratio of the LDH; i.e., the present LDH2 was slightly more difficult to decarbonate than LDH3, probably due to the higher layer-charge density of LDH2.  相似文献   

19.
A study is reported on the thermal evolution of Mg, V layered double hydroxides with interlayer carbonate anions and different Mg/V molar ratios (from 1 to 4). Decomposition in O2 occurs at lower temperature than that in N2; the stability of the layered structure decreases as the V content increases. Oxidation of layer V3+ cations occurs in the same temperature range as dehydroxylation and decarbonation. The nature of the crystalline phases formed upon calcination at high temperatures strongly depends on the Mg/V molar ratio in the initial solid.  相似文献   

20.
A series of five oleate-containing layered double hydroxides with varied ratios of zinc to magnesium, i.e., with the general formula Zn2−yMgyAl(OH)6 [CH3(CH2)7CHCH(CH2)7COO]·nH2O, were synthesized and used to prepare nanocomposites of polypropylene (PP). The nanomaterials were characterized by elemental analysis, attenuated total reflection-infrared spectroscopy (ATR-IR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), while the composites were characterized by XRD, TGA, transmission electron microscopy (TEM) and cone calorimetry. The zinc-containing LDH showed better dispersion in the polymer at the micrometer level than did the magnesium-containing LDH while both are equally well-dispersed at the nanometer level. The magnesium-containing composites led to more thermally stable systems in TGA experiments, while the zinc systems gave greater reductions in heat release rate during combustion. Dispersion was also affected by the amount of PP-g-MA which was present. More PP-g-MA gave better dispersion and a significantly reduced peak heat release rate, i.e., enhanced fire performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号