首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and full characterization for a series of cyclometallated complexes of Pt(II) and Pd(II) incorporating the fluxional trithiacrown ligand 1,4,7-trithiacyclononane ([9]aneS3). Reaction of [M(C insertion mark N)(micro-Cl)]2 (M = Pt(II), Pd(II); C insertion mark N = 2-phenylpyridinate (ppy) or 7,8-benzoquinolinate (bzq)) with [9]aneS3 followed by metathesis with NH4PF6 yields [M(C insertion mark N)([9]aneS3)](PF6). The complexes [M(C insertion mark P)([9]aneS3)](PF6) (M = Pt(II), Pd(II); Cinsertion markP = [CH2C6H4P(o-tolyl)2-C,P]-) were synthesized from their respective [Pt(C insertion mark P)(micro-Cl)]2 or [Pd(C insertion mark P)(micro-O2CCH3)]2 (C insertion mark P) starting materials. All five new complexes have been fully characterized by multinuclear NMR, IR and UV-Vis spectroscopies in addition to elemental analysis, cyclic voltammetry, and single-crystal structural determinations. As expected, the coordinated [9]aneS3 ligand shows fluxional behavior in its NMR spectra, resulting in a single 13C NMR resonance despite the asymmetric coordination environment of the cyclometallating ligand. Electrochemical studies reveal irreversible one-electron metal-centered oxidations for all Pt(II) complexes, but unusual two-electron reversible oxidations for the Pd(II) complexes of ppy and bzq. The X-ray crystal structures of each complex indicate an axial M-S interaction formed by the endodentate conformation of the [9]aneS3 ligand. The structure of [Pd(bzq)([9]aneS3)](PF6) exhibits disorder in the [9]aneS3 conformation indicating a rare exodentate conformation as the major contributor in the solid-state structure. DFT calculations on [Pt([9]aneS3)(ppy)](PF6) and [Pd([9]aneS3)(ppy)](PF6) indicate the HOMO for both complexes is primarily dz2 in character with a significant contribution from the phenyl ring of the ppy ligand and p orbital of the axial sulfur donor. In contrast, the calculated LUMO is primarily ppy pi* in character for [Pt([9]aneS3)(ppy)](PF6), but dx2-y2 in character for [Pd([9]aneS3)(ppy)](PF6).  相似文献   

2.
The mononuclear +2 oxidation state metal complexes [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been synthesized and characterized crystallographically. The crystal structure of the Au(II) species [Au([9]aneS(3))(2)](BF(4))(2) shows a Jahn-Teller tetragonally distorted geometry with Au-S(1) = 2.839(5), Au-S(2) = 2.462(5), and Au-S(3) = 2.452(5) A. The related Ag(II) complex [Ag([18]aneS(6))](ClO(4))(2) has been structurally characterized at both 150 and 30 K and is the first structurally characterized complex of Ag(II) with homoleptic thioether S-coordination. The single-crystal X-ray structure of [Ag([18]aneS(6))](ClO(4))(2) confirms octahedral homoleptic S(6)-thioether coordination. At 150 K, the structure contains two independent Ag(II)-S distances of 2.569(7) and 2.720(6) A. At 30 K, the structure retains two independent Ag(II)-S distances of 2.615(6) and 2.620(6) A, with the complex cation retaining 3-fold symmetry. The electronic structures of [Au([9]aneS(3))(2)](2+) and [Ag([18]aneS(6))](2+) have been probed in depth using multifrequency EPR spectroscopy coupled with DFT calculations. For [Au([9]aneS(3))(2)](2+), the spectra are complex due to large quadrupole coupling to (197)Au. Simulation of the multifrequency spectra gives the principal g values, hyperfine (A) and quadrupole (P) couplings, and furthermore reveals non-co-incidence of the principal axes of the P tensor with respect to the A and g matrices. These results are rationalized in terms of the electronic and geometric structure and reveal that the SOMO has ca. 30% Au 5d(xy)() character, consistent with DFT calculations (27% Au character). For [Ag([18]aneS(6))](2+), detailed EPR spectroscopic analysis confirms that the SOMO has ca. 26% Ag 4d(xy)() character and DFT calculations are consistent with this result (22% Ag character).  相似文献   

3.
A family of coordination complexes has been synthesized, each comprising a ruthenium(II) center ligated by a thiacrown macrocycle, [9]aneS(3), [12]aneS(4), or [14]aneS(4), and a pair of cis-coordinated ligands, niotinamide (nic), isonicotinamide (isonic), or p-cyanobenzamide (cbza), that provide the complexes with peripherally situated amide groups capable of hydrogen bond formation. The complexes [Ru([9]aneS(3))(nic)(2)Cl]PF(6), 1(PF(6)); [Ru([9]aneS(3)) (isonic)(2)Cl]PF(6), 2(PF(6)); [Ru([12]aneS(4))(nic)(2)](PF(6))(2), 3(PF(6))(2); [Ru([12]aneS(4))(isonic)(2)](PF(6))(2), 4(PF(6))(2); [Ru([12]aneS(4)) (cbza)(2)](PF(6))(2), 5(PF(6))(2); [Ru([14]aneS(4))(nic)(2)](PF(6))(2), 6(PF(6))(2); [Ru([14]aneS(4))(isonic)(2)](PF(6))(2), 7(PF(6))(2); and [Ru([14]aneS(4))(cbza)(2)](PF(6))(2), 8(PF(6))(2) have been characterized by NMR spectroscopy, mass spectrometry, and elemental analysis. UV/visible spectroscopy shows that each complex exhibits an intense high-energy band (230-255 nm) assigned to a pi-pi* transition and a lower energy band (297-355 nm) assigned to metal-to-ligand charge-transfer transitions. Electrochemical studies indicate good reversibility for the oxidations of complexes with nic and isonic ligands (|I(a)/I(c)| = 1; DeltaEp < 100 mV), In contrast, complexes 5 and 8, which incorporate cbza ligands, display oxidations that are not fully electrochemically reversible (|I(a)/I(c)| = 1, DeltaEp > or = 100 mV). Metal-based oxidation couples between 1.32 and 1.93 V versus Ag/AgCl can be rationalized in term of the acceptor capabilities of the thiacrown ligands and the amide-bearing ligands, as well as the pi-donor capacity of the chloride ligands in compounds 1 and 2. The potential to use these electroactive metal complexes as building blocks for hydrogen-bonded crystalline materials has been explored. Crystal structures of compounds 1(PF(6)).H(2)O, 1(BF(4)).2H(2)O, 2(PF(6)), 3(PF(6))(2), 6(PF(6))(2)CH(3)NO(2), and 8(PF(6))(2) are reported. Four of the six form amide-amide N-H...O hydrogen bonds leading to networks constructed from amide C(4) chains or tapes containing R(2)(2) (8) hydrogen-bonded rings. The other two, 2(PF(6)) and 8(PF(6)), form networks linked through amide-anion N-H...F hydrogen bonds. The role of counterions and solvent in interrupting or augmenting direct amide-amide network propagation is explored, and the systematic relationship between the hydrogen-bonded networks formed across the series of structures is presented, showing the relationship between chain and tape arrangements and the progression from 1D to 2D networks. The scope for future systematic development of electroactive tectons into network materials is discussed.  相似文献   

4.
With the aim of expanding the structure-activity relationship investigation, the series of Ru(II) half sandwich coordination compounds of the type [Ru([9]aneS3)(chel)(L)](n+) previously described by us (where [9]aneS3 is the neutral face-capping ligand 1,4,7-trithiacyclononane, chel is a neutral or anonic chelating ligand, L = Cl(-) or dmso-S, n = 0-2) was extended to 1,4,7-triazacyclononane ([9]aneN3). In addition, new neutral N-N, and anionic N-O and O-O chelating ligands, i.e. dach (trans-1,2-diaminocyclohexane), pic(-) (picolinate), and acac(-) (acetylacetonate), were investigated in combination with both [9]aneS3 and [9]aneN3. Overall, ten new half-sandwich complexes were prepared and fully characterized and their chemical behaviour in aqueous solution was established. The single-crystal X-ray structures of eight of them, including the versatile precursor [Ru([9]aneN3)(dmso-S)(2)Cl]Cl (9), were also determined. The results of in vitro antiproliferative tests performed on selected compounds against MDA-MB-231 human mammary carcinoma cells confirmed that, in this series, only compounds that hydrolyse the monodentate ligand at a reasonable rate show moderate activity, provided that the chelate ligand is a hydrogen bond donor.  相似文献   

5.
The Pd(II) complexes [Pd([9]aneS(3))(2)](PF(6))(2)·2MeCN (1) ([9]aneS(3) = 1,4,7-trithiacyclononane) and [Pd([18]aneS(6))](PF(6))(2) (2) ([18]aneS(6) = 1,4,7,10,13,16-hexathiacyclooctadecane) can be oxidized electrochemically or chemically oxidized with 70% HClO(4) to [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively. These centers have been characterized by single crystal X-ray diffraction, and by UV/vis and multifrequency electron paramagnetic resonance (EPR) spectroscopies. The single crystal X-ray structures of [Pd(III)([9]aneS(3))(2)](ClO(4))(6)·(H(3)O)(3)·(H(2)O)(4) (3) at 150 K and [Pd([18]aneS(6))](ClO(4))(6)·(H(5)O(2))(3) (4) at 90 K reveal distorted octahedral geometries with Pd-S distances of 2.3695(8), 2.3692(8), 2.5356(9) and 2.3490(6), 2.3454(5), 2.5474(6) ?, respectively, consistent with Jahn-Teller distortion at a low-spin d(7) Pd(III) center. The Pd(II) compound [Pd([9]aneS(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(1/2) = +0.57 V vs. Fc(+)/Fc assigned to a formal Pd(III)/Pd(II) couple. Multifrequency (Q-, X-, S-, and L-band) EPR spectroscopic analysis of [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) gives g(iso) = 2.024, |A(iso(Pd))| = 18.9 × 10(-4) cm(-1); g(xx) = 2.046, g(yy) = 2.041, g(zz) = 2.004;?|A(xx(Pd))| = 24 × 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 14 × 10(-4) cm(-1), |a(xx(H))| = 4 × 10(-4) cm(-1), |a(yy(H))| = 5 × 10(-4) cm(-1), |a(zz(H))| = 5.5 × 10(-4) cm(-1) for [Pd([9]aneS(3))(2)](3+), and g(iso) = 2.015, |A(iso(Pd))| = 18.8× 10(-4) cm(-1); g(xx) = 2.048 g(yy) = 2.036, g(zz) = 1.998; |a(xx(H))| = 5, |a(yy(H))| = 5, |a(zz(H))| = 6 × 10(-4) cm(-1); |A(xx(Pd))| = 23× 10(-4) cm(-1), |A(yy(Pd))| = 22 × 10(-4) cm(-1), |A(zz(Pd))| = 4 × 10(-4) cm(-1) for [Pd([18]aneS(6))](3+). Both [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+) exhibit five-line superhyperfine splitting in the g(zz) region in their frozen solution EPR spectra. Double resonance spectroscopic measurements, supported by density functional theory (DFT) calculations, permit assignment of this superhyperfine to through-bond coupling involving four (1)H centers of the macrocyclic ring. Analysis of the spin Hamiltonian parameters for the singly occupied molecular orbital (SOMO) in these complexes gives about 20.4% and 25% Pd character in [Pd([9]aneS(3))(2)](3+) and [Pd([18]aneS(6))](3+), respectively, consistent with the compositions calculated from scalar relativistic DFT calculations.  相似文献   

6.
The mononuclear macrocyclic complexes [Au(I)([9]aneS2O)2]BF4 x MeCN 1a, [Au(II)([9]aneS2O)2](BF4)2 x 2 MeCN 2a, and [Au(III)([9]aneS2O)2](ClO4)6(H5O2)(H3O)2 3 ([9]aneS2O = 1-oxa-4,7-dithiacyclononane) have been prepared and structurally characterized by single crystal X-ray crystallography. The oxidation of [Au([9]aneS2O)2](+) to [Au([9]aneS2O)2](2+) involves a significant reorganization of the co-ordination sphere from a distorted tetrahedral geometry in [Au([9]aneS2O)2](+) [Au-S 2.3363(12), 2.3877(12), 2.6630(11), 2.7597(13) A] to a distorted square-planar co-ordination geometry in [Au([9]aneS2O)2](2+). The O-donors in [Au([9]aneS2O)2](2+) occupy the axial positions about the Au(II) center [Au...O = 2.718(2) A] with the S-donors occupying the equatorial plane [Au-S 2.428(8) and 2.484(8) A]. [Au([9]aneS2O)2](3+) shows a co-ordination sphere similar to that of [Au([9]aneS2O)2](2+) but with significantly shorter axial Au...O interactions [2.688(2) A] and equatorial Au-S bond lengths [2.340(4) and 2.355(6) A]. The cyclic voltammogram of 1 in MeCN (0.2 M NBu4PF6, 253 K) at a scan rate of 100 mV s(-1) shows an oxidation process at E(p)(a) = +0.74 V and a reduction process at E(p)(c) = +0.41 V versus Fc(+)/Fc assigned to the two-electron Au(III/I) couple and a second reduction process at E(p)(c) = +0.19 V assigned to the Au(I/0) couple. This electrochemical assignment is confirmed by coulometric and UV-vis spectroelectrochemical measurements. Multifrequency EPR studies of the mononuclear Au(II) complex [Au([9]aneS2O)2](2+) in a fluid solution at X-band and as frozen solutions at L-, S-, X-, K-, and Q-band reveal g(iso) = 2.0182 and A(iso) = -44 x 10(-4) cm(-1); g(xx) = 2.010, g(yy) = 2.006, g(zz) = 2.037; A(xx) = -47 x 10(-4) cm(-1), A(yy) = -47 x 10(-4) cm(-1), A(zz) = -47 x 10(-4) cm(-1); P(xx) = -18 x 10(-4) cm(-1), P(yy) = -10 x 10(-4) cm(-1), and P(zz) = 28 x 10(-4) cm(-1). DFT calculations predict a singly occupied molecular orbital (SOMO) with 27.2% Au 5d(xy) character, consistent with the upper limit derived from the uncertainties in the (197)Au hyperfine parameters. Comparison with [Au([9]aneS3)2](2+) reveals that the nuclear quadrupole parameters, P(ii) (i = x, y, z) are very sensitive to the nature of the Au(II) co-ordination sphere in these macrocyclic complexes. The observed geometries and bond lengths for the cations [Au([9]aneS2O)2](+/2+/3+) reflect the preferred stereochemistries of d(10), d(9), and d(8) metal ions, respectively, with the higher oxidation state centers being generated at higher anodic potentials compared to the related complexes [Au([9]aneS3)2](+/2+/3+).  相似文献   

7.
We report the measurement of 113Cd NMR chemical shift data for homoleptic thioether and related aza and mixed aza/thiacrown complexes. In a series of Cd(II) complexes containing trithioether to hexathioether ligands, we observe solution 113Cd NMR chemical shifts in the range of 225 to 731 ppm. Upfield chemical shifts in these NMR spectra are seen whenever: (a) the number of thioether sulfur donors in the complex is decreased, (b) a thioether sulfur donor is replaced by a secondary nitrogen donor, or (c) the size of the macrocycle ring increases without a change in the nature or number of the donor atoms. Changes in the identity of non-coordinating anions such as perchlorate or hexafluorophosphate have little effect upon the 113Cd NMR chemical shift in solution. We report the X-ray structure of the complex [Cd([12]aneS4)2](ClO4)2 ([12]aneS4 = 1,4,7,10-tetrathiacyclododecane) (1) which shows the first example of octakis(thioether) coordination of a metal ion, forming an unusual eight-coordinate square antiprismatic structure. We report the X-ray structure of the complex [Cd([9]aneS3)2](PF6)2 ([9]aneS3 = 1,4,7-trithiacyclononane) (3a) which shows hexakis(thioether) coordination to form a distorted octahedral structure. We have also prepared and characterized the Cd(II) complex of a mixed azathiacrown, [Cd([18]aneS4N2)](PF6)2 ([18]aneS4N2 = 1,4,10,13-tetrathia-7,16-diazacyclooctadecane) (6). Its X-ray structure shows a distorted octahedral S4N2 environment around the Cd(II) with the ligand coordinated in the rac fashion. We observe a solvent- and temperature-dependent 14N-1H coupling in the 1H NMR spectrum of the complex which is not present in analogous complexes with this ligand.  相似文献   

8.
With the aim of further developing the structure-activity relationship in biologically active half-sandwich Ru(ii)-[9]aneS(3) complexes ([9]aneS(3)=1,4,7-trithiacyclononane), a series of new mono- and dinuclear complexes bearing the chelating dicarboxylate ligands oxalate (ox), malonate (mal) and methylmalonate (mmal), have been synthesized and studied. Treatment of the precursor [Ru([9]aneS(3))(dmso)(3)][CF(3)SO(3)](2) (7) with equivalent amounts of K(2)(dicarb) afforded the corresponding neutral complexes with the general formula [Ru([9]aneS(3))(dmso-S)(eta(2)-dicarb)] (where dicarb=ox (1), mal (2) and mmal (3)), while using half an equivalent of K(2)(ox), the symmetric dimer [{Ru([9]aneS(3))(dmso-S)}(2)(mu-eta(4)-ox)][CF(3)SO(3)](2) (4) was isolated. The reaction of with the oxalato complex fac-[Ru(dmso-S)(3)(dmso-O)(eta(2)-ox)] (9) yielded two asymmetric dimers, namely [{Ru([9]aneS(3))(dmso-S)}(mu-eta(4)-ox){fac-Ru(dmso-S)(3)(CF(3)SO(3))}][CF(3)SO(3)] (5) and [{Ru([9]aneS(3))(dmso-S)}(mu-eta(4)-ox){fac-Ru(dmso-S)(3)(dmso-O)}][CF(3)SO(3)](2) (6), depending on the reaction conditions. All new complexes were structurally characterized, both in solution (by NMR spectroscopy) and in the solid state (by X-ray crystallography). The chemical behavior of the complexes in aqueous solution was studied by UV-Vis and NMR spectroscopy in view of their potential antitumor activity: the monomers partially release a dmso ligand to yield the monofunctional aqua adduct [Ru([9]aneS(3))(eta(2)-dicarb)(H(2)O)], while the dimers rapidly open up the oxalato bridge to give two mononuclear fragments. Splitting of the asymmetric dimers 5 and 6 occurs selectively and the ox moiety remains bonded to the fac-Ru(dmso-S)(3) fragment. A detailed comparison of the structural and chemical features of 1-6 with those of similar dicarboxylate complexes possessing the fac-Ru(dmso-S)(3) fragment in place of Ru([9]aneS(3)) allows us to draw a number of general conclusions on the binding preferences of dicarb ligands on the octahedral Ru(II) center.  相似文献   

9.
The synthesis and properties of 3 new ligand-bridged bimetallic complexes, 1(2+), 2(2+), and 3(2+), containing [RuCl([9]aneS(3))](+) metal centers are reported. Each complex was bridged by a different ditopic ligand. 1(2+) is bridged by 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (bptz), while 2(2+) and 3(2+) are bridged by 2,3-bis(2-pyridyl)pyrazine (dpp) and 2,2'-bipyrimidine (bpym), respectively. The Ru([II]) isovalent states of these complexes have been investigated using a variety of techniques. In the case of 3(2+), X-ray crystallography studies show preferential crystallization of an anti form with respect to coordinated chloride ligands (crystal data for [3][Cl(2)].4H(2)O: C(20)H(38)Cl(4)N(4)O(4)Ru(2)S(6), monoclinic, space group P2(1)/a, a = 10.929(14), b = 13.514(17), c = 11.299(16) A, beta = 90.52(1), V = 1669 A(3), Z = 2). UV/vis spectroscopy shows that spectra of these complexes are dominated by intraligand (pi-->pi) and metal-to-ligand Ru(d)-->L(pi) charge transfer transitions. Electrochemical studies reveal that metal-metal interactions are sufficiently intense to generate the Ru(III)/Ru(II) mixed valence [[RuCl([9]aneS(3))(2)](L-L)](3+) state, where L-L = individual bridging ligands. Although the 1(3+), 2(3+), and 3(3+) mixed valence states were EPR silent at room temperature and 77 K, isotropic solution spectra were observed for the electrochemically generated radical cations 1(+), 2(+), and 3(+), with 1(+) displaying well-resolved hyperfine coupling to bridging ligand nitrogens. Using UV/vis/NIR spectroelectrochemistry, we investigated optical properties of the mixed valence complexes. All three showed intervalence charge transfer (IVCT) bands that are much more intense than electrochemical data indicate. Indeed, a comparison of IVCT data for 1(3+) with an analogous structure containing [(NH3)(3)Ru](2+) metal centers shows that the IVCT in the new complex is an order of magnitude more intense. It is concluded that although the new complexes show relatively weak electrostatic interactions, they possess large resonance energies.  相似文献   

10.
The present article describes ruthenium nitrosyl complexes with the {RuNO}(6) and {RuNO}(7) notations in the selective molecular frameworks of [Ru(II)([9]aneS(3))(bpy)(NO(+))](3+) (4(3+)), [Ru(II)([9]aneS(3))(pap) (NO(+))](3+) (8(3+)) and [Ru(II)([9]aneS(3))(bpy)(NO˙)](2+) (4(2+)), [Ru(II)([9]aneS(3))(pap)(NO˙)](2+) (8(2+)) ([9]aneS(3) = 1,4,7-trithiacyclononane, bpy = 2,2'-bipyridine, pap = 2-phenylazopyridine), respectively. The nitrosyl complexes have been synthesized by following a stepwise synthetic procedure: {Ru(II)-Cl} → {Ru(II)-CH(3)CN} → {Ru(II)-NO(2)} → {Ru(II)-NO(+)} → {Ru(II)-NO˙}. The single-crystal X-ray structure of 4(3+) and DFT optimised structures of 4(3+), 8(3+) and 4(2+), 8(2+) establish the localised linear and bent geometries for {Ru-NO(+)} and {Ru-NO˙} complexes, respectively. The crystal structures and (1)H/(13)C NMR suggest the [333] conformation of the coordinated macrocyclic ligand ([9]aneS(3)) in the complexes. The difference in π-accepting strength of the co-ligands, bpy in 4(3+) and pap in 8(3+) (bpy < pap) has been reflected in the ν(NO) frequencies of 1945 cm(-1) (DFT: 1943 cm(-1)) and 1964 cm(-1) (DFT: 1966 cm(-1)) and E°({Ru(II)-NO(+)}/{Ru(II)-NO˙}) of 0.49 and 0.67 V versus SCE, respectively. The ν(NO) frequency of the reduced {Ru-NO˙} state in 4(2+) or 8(2+) however decreases to 1632 cm(-1) (DFT: 1637 cm(-1)) or 1634 cm(-1) (DFT: 1632 cm(-1)), respectively, with the change of the linear {Ru(II)-NO(+)} geometry in 4(3+), 8(3+) to bent {Ru(II)-NO˙} geometry in 4(2+), 8(2+). The preferential stabilisation of the eclipsed conformation of the bent NO in 4(2+) and 8(2+) has been supported by the DFT calculations. The reduced {Ru(II)-NO˙} exhibits free-radical EPR with partial metal contribution revealing the resonance formulation of {Ru(II)-NO˙}(major)?{Ru(I)-NO(+)}(minor). The electronic transitions of the complexes have been assigned based on the TD-DFT calculations on their DFT optimised structures. The estimated second-order rate constant (k, M(-1) s(-1)) of the reaction of the nucleophile, OH(-) with the electrophilic {Ru(II)-NO(+)} for the bpy derivative (4(3+)) of 1.39 × 10(-1) is half of that determined for the pap derivative (8(3+)), 2.84 × 10(-1) in CH(3)CN at 298 K. The Ru-NO bond in 4(3+) or 8(3+) undergoes facile photolytic cleavage to form the corresponding solvent species {Ru(II)-CH(3)CN}, 2(2+) or 6(2+) with widely varying rate constant values, (k(NO), s(-1)) of 1.12 × 10(-1) (t(1/2) = 6.2 s) and 7.67 × 10(-3) (t(1/2) = 90.3 s), respectively. The photo-released NO can bind to the reduced myoglobin to yield the Mb-NO adduct.  相似文献   

11.
The synthesis, spectroscopic, and crystal structures of three heteroleptic thioether/halide platinum(II) (Pt(II)) complexes of the general formula [Pt(9S3)X2] (9S3=1,4,7-trithiacyclononane, X=Cl, Br, I) are presented. All three 9S3/dihalo complexes form very similar structures in which the Pt(II) center is surrounded by a cis arrangement of two halides and two sulfur atoms from the 9S3 ligand. The third sulfur from the 9S3 forms a long distance interaction with the Pt center resulting in an elongated square pyramidal structure with a S2X2+S1 coordination geometry. The distances between the Pt(II) center and axial sulfur shorten with larger halide ions (Cl=3.260(3) Å>Br=3.243(2) Å>I=3.207(2) Å). These distances are consistent with the halides functioning as π donor ligands, and their Pt---S axial distances fall intermediate between Pt(II) thioether complexes involving π acceptor and σ donor ligands. The 195Pt NMR chemical shift values follow a similar trend with an increased shielding of the platinum ion with larger halide ions. The 9S3 ligand is fluxional in all of these complexes, producing a single carbon resonance. Additionally, a related series of homoleptic crown thioether complexes have been studied using 195Pt NMR, and there is a strong correlation between the chemical shift and complex structure. Homoleptic crown thioethers show the anticipated upfield chemical shifts with increasing number of coordinated sulfurs. Complexes containing four coordinated sulfur donors have chemical shifts that fall in the range of −4000 to −4800 ppm while a value near −5900 ppm is indicative of five coordinated sulfurs. However, for S4 crown thioether complexes, differences in the stereochemical orientation of lone pair electrons on the sulfur donors can greatly influence the observed 195Pt NMR chemical shifts, often by several hundred ppm.  相似文献   

12.
Studies have been conducted on the copper complexes formed with two sexadentate macrocyclic ligands containing four thioether sulfur donor atoms plus either two nitrogen or two oxygen donor atoms on opposing sides of the ring. The resulting two ligands, L, designated as [18]aneS(4)N(2) and [18]aneS(4)O(2), respectively, represent homologues of the previously studied Cu(ii/i) system with a macrocycle having six sulfur donor atoms, [18]aneS(6). Crystal structures of [Cu(II)([18]aneS(4)O(2))](ClO(4))(2) and [Cu(I)([18]aneS(4)O(2))]ClO(4) have been determined in this work. Comparison of the structures of all three systems reveals that the oxidized complexes are six coordinate with two coordinate bonds undergoing rupture upon reduction. However, the geometric changes accompanying electron transfer appear to differ for the three systems. The stability constants and electrochemical properties of both of the heteromacrocyclic complexes have been determined in acetonitrile and the Cu(II/I)L electron-transfer kinetics have been studied in the same solvent using six different counter reagents for each system. The electron self-exchange rate constants have then been calculated using the Marcus cross relationship. The results are compared to other Cu(II/I)L systems in terms of the effect of ligand geometric changes upon the overall kinetic behavior.  相似文献   

13.
Two new C,N,N-type ligands (HL(2) and HL(3)), containing a C(phenyl), a N(pyridyl), and a N(imidazolyl) donor, and their cycloplatinated complexes, [Pt(L(2))Cl] (1), [Pt(L(3))Cl] (2), [Pt(L(2))(PPh(3))](+) (3) and [Pt(L(3))(PPh(3))](+) (4), have been successfully synthesized and characterized. Spectroscopic and (3)MLCT luminescent properties of these Pt(II) cyclometalated complexes were found to be pH dependent. This was attributed to the protonation/deprotonation of the acidic 1-imidazolyl-NH moieties on the ligands. All the cycloplatinated complexes (both protonated and deprotonated forms) possessed two-photon excitability with two-photon absorption cross-sections ranging from 6.0 to 30.0 GM (protonated forms) and from 16.2 to 24.9 GM (deprotonated forms).  相似文献   

14.
Chan SC  Cheung HY  Wong CY 《Inorganic chemistry》2011,50(22):11636-11643
Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine (ON(^)N) and tetradentate thioether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4), [Ru(ON(^)N)([14]aneS4)](2+) [ON(^)N = 2-(2-nitrosophenyl)pyridine (2a), 10-nitrosobenzo[h]quinoline (2b), 2-(2-nitroso-4-methylphenyl)pyridine, (2c), 2-(2-nitrosophenyl)-5-(trifluoromethyl)pyridine (2d)] and analogues with the 1,4,7-trithiacyclononane ([9]aneS3)/tert-butylisocyanide ligand set, [Ru(ON(^)N)([9]aneS3)(C≡N(t)Bu)](2+) (4a and 4b), have been prepared by insertion of a nitrosonium ion (NO(+)) into the Ru-aryl bond of cyclometalated ruthenium(II) complexes. The molecular structures of the ON(^)N-ligated complexes 2a and 2b reveal that (i) the ON(^)N ligands behave as bidentate chelates via the two N atoms and the bite angles are 86.84(18)-87.83(16)° and (ii) the Ru-N(NO) and N-O distances are 1.942(5)-1.948(4) and 1.235(6)-1.244(5) ?, respectively. The Ru-N(NO) and N-O distances, together with ν(N═O), suggest that the coordinated ON(^)N ligands in this work are neutral moiety (ArNO)(0) rather than monoanionic radical (ArNO)(?-) or dianion (ArNO)(2-) species. The nitrosated complexes 2a-2d show moderately intense absorptions centered at 463-484 nm [ε(max) = (5-6) × 10(3) dm(3) mol(-1) cm(-1)] and a clearly discriminable absorption shoulder around 620 nm (ε(max) = (6-9) × 10(2) dm(3) mol(-1) cm(-1)), which tails up to 800 nm. These visible absorptions are assigned as a mixing of d(Ru) → ON(^)N metal-to-ligand charge-transfer and ON(^)N intraligand transitions on the basis of time-dependent density functional theory (TD-DFT) calculations. The first reduction couples of the nitrosated complexes range from -0.53 to -0.62 V vs Cp(2)Fe(+/0), which are 1.1-1.2 V less negative than that for [Ru(bpy)([14]aneS4)](2+) (bpy = 2,2'-bipyridine). Both electrochemical data and DFT calculations suggest that the lowest unoccupied molecular orbitals of the nitrosated complexes are ON(^)N-centered. Natural population analysis shows that the amount of positive charge on the Ru centers and the [Ru([14]aneS4)] moieties in 2a and 2b is larger than that in [Ru(bpy)([14]aneS4)](2+). According to the results of the structural, spectroscopic, electrochemical, and theoretical investigations, the ON(^)N ligands in this work have considerable π-acidic character and behave as better electron acceptors than bpy.  相似文献   

15.
A series of nickel(II) complexes with polydentate aminopyridine ligands N,N,N'-tris-[2-(2'-pyridyl)ethyl]ethane-1,2-diamine (L1), N,N,N'-tris-[2-(2'-pyridyl)ethyl]-N'-methylethane-1,2-diamine (L2), and N,N'-bis-[2-(2'-pyridyl)ethyl]-N,N'-dimethylethane-1,2-diamine (L3) were synthesized and characterized by elemental analysis and spectroscopic methods. Single-crystal X-ray diffraction studies showed that the Ni(II) ions have five-coordinate square-pyramidal geometry in [NiL2](ClO(4))(2), similar to that previously found in [NiL1](ClO(4))(2) x CH(3)NO(2) (Hoskins, B. F.; Whillans, F. D.J. Chem. Soc., Dalton Trans. 1975, 657), and square-planar geometry in [NiL3](ClO(4))(2). All three nickel(II) complexes are reduced by sodium borohydride or sodium amalgam in organic solvents to nickel(I) species, which were identified by highly anisotropic EPR spectra at 100 K: g(1) = 2.239, g(2) = 2.199, and g(3) = 2.025 for [NiL1](+); g(axially) = 2.324 and g(radially) = 2.079 for [NiL2](+) and [NiL3](+). Cyclic voltammetry of the nickel(II) complexes in acetonitrile exhibited reversible reduction waves at -1.01 V for [NiL1](2+), -0.91 V for [NiL2](2+), and -0.83 V for [NiL3](2+) versus SCE, potentials which are significantly less negative than those of most previously characterized Ni(II) complexes with nitrogen-only donor atoms. Complexes [NiL1](2+) and [NiL2](2+) showed high catalytic activity in the electroreduction of 1,2-trans-dibromocyclohexane to cyclohexene.  相似文献   

16.
Guanosine derivatives with a nucleophilic group at the 5' position (G-5') are oxidized by the Pt (IV) complex Pt( d, l)(1,2-(NH 2) 2C 6H 10)Cl 4 ([Pt (IV)(dach)Cl 4]). The overall redox reaction is autocatalytic, consisting of the Pt (II)-catalyzed Pt (IV) substitution and two-electron transfer between Pt (IV) and the bound G-5'. In this paper, we extend the study to improve understanding of the redox reaction, particularly the substitution step. The [Pt (II)(NH 3) 2(CBDCA-O,O')] (CBDCA = cyclobutane-1,1-dicarboxylate) complex effectively accelerates the reactions of [Pt (IV)(dach)Cl 4] with 5'-dGMP and with cGMP, indicating that the Pt (II) complex does not need to be a Pt (IV) analogue to accelerate the substitution. Liquid chromatography/mass spectroscopy (LC/MS) analysis showed that the [Pt (IV)(dach)Cl 4]/[Pt (II)(NH 3) 2(CBDCA-O,O')]/cGMP reaction mixture contained two Pt (IV)cGMP adducts, [Pt (IV)(NH 3) 2(cGMP)(Cl)(CBDCA-O,O')] and [Pt (IV)(dach)(cGMP)Cl 3]. The LC/MS studies also indicated that the trans, cis-[Pt (IV)(dach)( (37)Cl) 2( (35)Cl) 2]/[Pt (II)(en)( (35)Cl) 2]/9-EtG mixture contained two Pt (IV)-9-EtG adducts, [Pt (IV)(en)(9-EtG)( (37)Cl)( (35)Cl) 2] and [Pt (IV)(dach)(9-EtG)( (37)Cl)( (35)Cl) 2]. These Pt (IV)G products are predicted by the Basolo-Pearson (BP) Pt (II)-catalyzed Pt (IV)-substitution scheme. The substitution can be envisioned as an oxidative addition reaction of the planar Pt (II) complex where the entering ligand G and the chloro ligand from the axial position of the Pt (IV) complex are added to Pt (II) in the axial positions. From the point of view of reactant Pt (IV), an axial chloro ligand is thought to be substituted by the entering ligand G. The Pt (IV) complexes without halo axial ligands such as trans, cis-[Pt(en)(OH) 2Cl 2], trans, cis-[Pt(en)(OCOCF 3) 2Cl 2], and cis, trans, cis-[Pt(NH 3)(C 6H 11NH 2)(OCOCH 3) 2Cl 2] ([Pt (IV)(a,cha)(OCOCH 3) 2Cl 2], satraplatin) did not react with 5'-dGMP. The bromo complex, [Pt (IV)(en)Br 4], showed a significantly faster substitution rate than the chloro complexes, [Pt (IV)(en)Cl 4] and [Pt (IV)(dach)Cl 4]. The results indicate that the axial halo ligands are essential for substitution and the Pt (IV) complexes with larger axial halo ligands have faster rates. When the Pt (IV) complexes with different carrier ligands were compared, the substitution rates increased in the order [Pt (IV)(dach)Cl 4] < [Pt (IV)(en)Cl 4] < [Pt (IV)(NH 3) 2Cl 4], which is in reverse order to the carrier ligand size. These axial and carrier ligand effects on the substitution rates are consistent with the BP mechanism. Larger axial halo ligands can form a better bridging ligand, which facilitates the electron-transfer process from the Pt (II) to Pt (IV) center. Smaller carrier ligands exert less steric hindrance for the bridge formation.  相似文献   

17.
Half sandwich Ru(ii)-[9]aneS3 complexes ([9]aneS3 = 1,4,7-trithiacyclononane) are being studied for their antiproliferative activity. We investigated here the activation kinetics of three such complexes, namely [Ru([9]aneS3)(en)Cl](PF(6)) (1), [Ru([9]aneS3)(bpy)Cl](PF(6)) (2) and [Ru([9]aneS3)(pic)Cl] (3) (en = 1,2-diaminoethane, pic = picolinate), and their interaction with DNA model bases. The aim of the study was to assess how they are affected by the nature and charge of the chelating ligand. The model reactions of 1-3 with the guanine derivatives 9-methylguanine (9MeG), guanosine (Guo), and guanosine 5'-monophosphate (5'-GMP) were studied by NMR spectroscopy. All reactions lead, although with different rates and to different extents, to the formation of monofunctional adducts with the guanine derivatives N7-bonded to the Ru center. Two products, the complexes [Ru([9]aneS3)(en)(9MeG-N7)](PF(6))(2) (4) and [Ru([9]aneS3)(pic)(9MeG-N7)](PF(6)) (10), were structurally characterized also by X-ray crystallography. The structure of 4 is stabilized by strong intramolecular H-bonding between an NH of en and the carbonyl O6 of 9MeG. The kinetics of aquation and anation of complexes 2 and 3, as well as the kinetics and the mechanism of the reaction of complexes 1-3 with the biologically more relevant 5'-GMP ligand were studied by UV-Vis spectroscopy. The rate of the reaction of 1-3 with 5'-GMP depends on the nature of the chelating ligand rather than on the charge of the complex, decreasing in the order 3≈2 > 1. The measured enthalpies and entropies of activation (ΔH(≠) > 0, ΔS(≠) < 0) support an associative mechanism for the substitution process.  相似文献   

18.
The complex [Ru(py)3([9]aneS3)][PF6]2, 1 (py = pyridine), has proved to be a suitable starting material for the synthesis of heteroleptic Ru(II) complexes. By exploiting unfavorable steric interactions between 2-H and 6-H hydrogens of coordinated pyridyl ligands, we have synthesized half-sandwich complexes incorporating the thiocrown [9]aneS3 and a variety of facially coordinated N-donor ligands. Such complexes are easily prepared: Stirring 1 at room temperature in the presence of a suitable nitrile ligand leads to the exclusive substitution of one py ligand to produce complexes such as [([9]aneS3)Ru(py)2(NCMe)][PF6]2, 2. However, if the same reaction is carried out at higher temperatures, two py ligands are substituted, leading to complexes such as [([9]aneS3)Ru(py)(NCMe)2][PF6]2, 3. An alternative approach to such heteroleptic species has also been developed which exploits the restricted ability of thioethers to neutralize positive charges through sigma-donation. This phenomenon allows the synthesis of heteroleptic complexes in a two-step procedure via monocationic species. By variation of the donor/acceptor properties of ligands incorporated into the [Ru([9]aneS3)]2+ metal center, it is possible to tune the Ru(III)/Ru(II) redox couple over a range of > 700 mV. The solid-state structures of 1-3 were confirmed by X-ray crystallography studies. Crystal data: C22H30F12N4O2P2RuS3 (1.CH3NO2), monoclinic, Cc, a = 23.267(5) A, b = 11.5457(18) A, c = 26.192(5) A, alpha = 90 degrees, beta = 114.836(10) degrees, gamma = 90 degrees, Z = 8; C18H25F12N3P2RuS3 (2), triclinic, P1, a = 11.3958(19) A, b = 11.4280(19) A, c = 11.930(2) A, alpha = 100.518(3) degrees, beta = 100.542(3) degrees, gamma = 112,493(3) degrees, Z = 2; C15H23F12N3P2RuS3 (3), orthorhombic, Pna2(1)), a = 14.748(5) A, b = 18.037(18) A, c = 10.341(5) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, Z = 4.  相似文献   

19.
The preparations of the new complexes [AsBr(3)[MeS(CH(2))(2)SMe]], [AsX(3)([9]aneS(3))] (X = Cl, Br or I; [9]aneS(3) = 1,4,7-trithiacyclononane), [AsCl(3)([14]aneS(4))] ([14]aneS(4) = 1,4,8,11-tetrathiacyclotetradecane), [AsX(3)([8]aneSe(2))] ([8]aneSe(2) = 1,5-diselenacyclooctane), [(AsX(3))(2)([16]aneSe(4))] ([16]aneSe(4) = 1,5,9,13-tetraselenacyclohexadecane), and [(AsBr(3))(2)([24]aneSe(6))] ([24]aneSe(6) = 1,5,9,13,17,21-hexaselenacyclotetracosane) are described. These are obtained from direct reaction of the appropriate AsX(3) and 1 mol equiv of the thio- or selenoether ligand in anhydrous CH(2)Cl(2) (or thf for X = I) solution. The products have been characterized by microanalysis and IR and (1)H NMR spectroscopy. In solution they are extensively dissociated, reflecting the weak Lewis acidity of AsX(3). Reaction of AsX(3) with MeSe(CH(2))(2)SeMe or MeC(CH(2)EMe)(3) (E = S or Se) gave only oils. Treatment of PCl(3) or PBr(3) with Me(2)S, MeE(CH(2))(2)EMe, or [9]aneS(3) failed to give solid complexes, and there was no evidence from NMR spectroscopy for any adduct formation in solution. The crystal structures of the first series of thioether and selenoether complexes of As(III) are described: [AsBr(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsBr(3)S(2), a = 10.2818(6) A, b = 7.8014(5) A, c = 14.503(1) A, beta = 102.9330(2) degrees, monoclinic, P2(1)/c, Z = 4; [AsI(3)[MeS(CH(2))(2)SMe]], C(4)H(10)AsI(3)S(2), a = 9.1528(1) A, b = 11.5622(2) A, c = 12.0939(2) A, beta = 93.863(1) degrees, monoclinic, P2(1)()/n, Z = 4; [AsCl(3)([9]aneS(3))], C(6)H(12)AsCl(3)S(3), a = 17.520(4) A, b = 17.520(4) A, c = 16.790(7) A, tetragonal, I4(1)cd, Z = 16; [AsCl(3)([14]aneS(4))], C(10)H(20)AsCl(3)S(4), a = 13.5942(2) A, b = 7.7007(1) A, c = 18.1270(3) A, beta = 111.1662(5) degrees, monoclinic, P2(1)()/n, Z = 4; [(AsCl(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Cl(6)Se(4), a = 9.764(3) A, b = 13.164(1) A, c = 10.627(2) A, beta = 114.90(1) degrees, monoclinic, P2(1)()/n, Z = 2; [(AsBr(3))(2)([16]aneSe(4))], C(12)H(24)As(2)Br(6)Se(4), a = 10.1220(1) A, b = 13.4494(2) A, c = 10.5125(2) A, beta = 113.49(2) degrees, monoclinic, P2(1)()/n, Z = 2. [AsBr(3)[MeS(CH(2))(2)SMe]] and [AsI(3)[MeS(CH(2))(2)SMe]] reveal discrete mu(2)-halo As(2)X(6) dimeric structures involving distorted octahedral As(III), with the dithioether ligand chelating. [AsCl(3)([9]aneS(3))] adopts a discrete molecular distorted octahedral geometry with the thioether behaving as a weakly coordinated fac-capping ligand. [AsCl(3)([14]aneS(4))] forms an infinite sheet involving two mu(2)-chloro ligands on each As but bridging to two distinct As centers. Each macrocycle coordinates to two adjacent As centers via one S atom, giving a cis-octahedral Cl(4)S(2) donor set at As(III). The structures of [(AsCl(3))(2)([16]aneSe(4))] and [(AsBr(3))(2)([16]aneSe(4))] adopt 2-dimensional sheet structures with mu(2)-dihalo As(2)X(6) dimers cross-linked by mu(4)-tetraselenoether macrocycles, giving a disorted cis-X(4)Se(2) donor set at each As center. These species are compared with their antimony(III) and bismuth(III) analogues where appropriate.  相似文献   

20.
The Pt-L bond energies of simple triammineplatinum(II) complexes, [Pt(NH(3))(3)L](2+), with oxygen-, nitrogen-, and sulfur-containing donor ligands L have been predicted and rationalized using density functional theory. The ligands L have been chosen as models for functionalities of peptide side chains, for sulfur-containing protecting agents, and for adenine and guanine sites of the DNA as the ultimate target of platinum anticancer drugs. Calculation of the Pt-L bond energy in [Pt(NH(3))(3)L](2+) reveals that the soft metal center of triammineplatinum(II) prefers N ligands over S ligands. This remarkable result has been discussed in light of several interpretations of the hard and soft acids and bases principle. The concept of orbital-symmetry-based energy decomposition has been employed for the determination of the contributions from sigma and pi orbital interactions, electrostatics, and intramolecular hydrogen bonding to the Pt-L bond energy. The calculations show that considerable differences in the bond energies of the triammineplatinum(II) complexes with N-heterocycles such as 1-methylimidazole, 9-methyladenine, and 9-methylguanine arise from electrostatics rather than from orbital interactions. Surprisingly, the net stabilization by hydrogen bonding between the (Pt)N-H group and the oxygen of 9-methylguanine is as weak as the intramolecular hydrogen bond in the aqua complex [Pt(NH(3))(3)(H(2)O)](2+), challenging the common hypothesis that DNA-active anticancer drugs require carrier ligands with N-H functionalities because of their hydrogen-bonding ability. The influence of a polarizable environment on the stability of the complexes has been investigated systematically with the dependence of the dielectric constant epsilon. With increasing epsilon, the complexes with S-containing ligands are more strongly stabilized than the complexes of the N-containing heterocycles. At epsilon = 78.4, the dielectric constant of water, 9-methylguanine remains the only purine derivative investigated which is competitive to neutral sulfur ligands. These findings are particularly important for a rationalization of the results from recent experimental studies on the competition of biological donor ligands L for coordination with the metal center of [Pt(dien)L](2+) (dien = 1,5-diamino 3-azapentane).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号