首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
DNA computation is an emerging field that enables the assembly of complex circuits based on defined DNA logic gates. DNA-based logic gates have previously been operated through purely chemical means, controlling logic operations through DNA strands or other biomolecules. Although gates can operate through this manner, it limits temporal and spatial control of DNA-based logic operations. A photochemically controlled AND gate was developed through the incorporation of caged thymidine nucleotides into a DNA-based logic gate. By using light as the logic inputs, both spatial control and temporal control were achieved. In addition, design rules for light-regulated DNA logic gates were derived. A step-response, which can be found in a controller, was demonstrated. Photochemical inputs close the gap between DNA computation and silicon-based electrical circuitry, since light waves can be directly converted into electrical output signals and vice versa. This connection is important for the further development of an interface between DNA logic gates and electronic devices, enabling the connection of biological systems with electrical circuits.  相似文献   

2.
One of the fundamental goals of molecular computing is to reproduce the tenets of digital logic, such as component modularity and hierarchical circuit design. An important step toward this goal is the creation of molecular logic gates that can be rationally wired into multi-level circuits. Here we report the design and functional characterization of a complete set of modular DNA-based Boolean logic gates (AND, OR, and AND-NOT) and further demonstrate their wiring into a three-level circuit that exhibits Boolean XOR (exclusive OR) function. The approach is based on solid-supported DNA logic gates that are designed to operate with single-stranded DNA inputs and outputs. Since the solution-phase serves as the communication medium between gates, circuit wiring can be achieved by designating the DNA output of one gate as the input to another. Solid-supported logic gates provide enhanced gate modularity versus solution-phase systems by significantly simplifying the task of choosing appropriate DNA input and output sequences used in the construction of multi-level circuits. The molecular logic gates and circuits reported here were characterized by coupling DNA outputs to a single-input REPORT gate and monitoring the resulting fluorescent output signals.  相似文献   

3.
Computers have become smarter, smaller, and more efficient due to the downscaling of silicon‐based components. Top‐down miniaturisation of silicon‐based computer components is fast reaching its limitations because of physical constraints and economical non‐feasibility. Therefore, the possibility of a bottom‐up approach that uses molecules to build nano‐sized devices has been initiated. As a result, molecular logic gates based on chemical inputs and measurable optical outputs have captured significant attention very recently. In addition, it would be interesting if such molecular logic gates could be developed by making use of ion sensors, which can give significantly sensitive output information. This review provides a brief introduction to anion receptors, molecular logic gates, a comprehensive review on describing recent advances and progress on development of ion receptors for molecular logic gates, and a brief idea about the application of molecular logic gates.  相似文献   

4.
Self‐assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA‐based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three‐state molecular logic gate readily achievable on this platform. Such DNA‐based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

5.
Self-assembled plasmonic logic gates that read DNA molecules as input and return plasmonic chiroptical signals as outputs are reported. Such logic gates are achieved on a DNA-based platform that logically regulate the conformation of a chiral plasmonic nanostructure, upon specific input DNA strands and internal computing units. With systematical designs, a complete set of Boolean logical gates are realized. Intriguingly, the logic gates could be endowed with adaptiveness, so they can autonomously alter their logics when the environment changes. As a demonstration, a logic gate that performs AND function at body temperature while OR function at cold storage temperature is constructed. In addition, the plasmonic chiroptical output has three distinctive states, which makes a three-state molecular logic gate readily achievable on this platform. Such DNA-based plasmonic logic gates are envisioned to execute more complex tasks giving these unique characteristics.  相似文献   

6.
DNA-based photonic logic gates: AND,NAND, and INHIBIT   总被引:4,自引:0,他引:4  
Conventional microprocessors use elementary logic gates to perform complex computational tasks. Mimicking such computational processes using purely molecular systems has been limited in most cases by the lack of design generality or potential addressability of existing molecular logic gates. Herein we report that by employing the universal recognition properties of DNA simple photonic logic gates can be created that are capable of AND, NAND, and INHIBIT logic operations.  相似文献   

7.
The possibility of performing logical operations at the molecular level is being actively investigated at present with the aim of developing molecular logic gates, which can be used in information technologies. In this minireview, the design algorithm of molecular logic gates is considered and the requirements on molecular systems for use as logic gates are specified. Examples of molecular logic gates performing different logical operations are given. Attention is focused on all-photonic molecular logic gates, in which light is used as an input signal for transferring the system from one state to another and for reading the output signal by absorption or luminescence. In addition, optoelectronic devices with light as the input signal and electric current as the output signal are briefly discussed.  相似文献   

8.
Right out of the (logic) gate: Logic gates made from 3D DNA nanotetrahedra were constructed that are responsive to various ions, small molecules, and short strands of DNA. By including dynamic sequences in one or more edges of the tetrahedra, a FRET signal can be generated in the manner of AND, OR, XOR, and INH logic gates, as well as a half-adder circuit. These DNA logic gates were also applied to intracellular detection of ATP.  相似文献   

9.
Coskun A  Deniz E  Akkaya EU 《Organic letters》2005,7(23):5187-5189
[reaction, structure: see text] We report a unimolecular system functioning as a combinatorial logic circuit for half-subtractor. The emission characteristics can be modulated by chemical inputs, and when followed at two different wavelengths, two functionally integrated logic gates XOR and INHIBIT are obtained. Both logic gates function in the emission mode, and with very large differences in the signal intensity allowing unequivocal assignment of logic-0 and logic-1.  相似文献   

10.
以DNA为模板, 合成了具有荧光性质的银纳米簇(DNA-Ag NCs), 利用荧光光谱、 紫外光谱和红外光谱等手段对其进行了表征. 基于DNA-Ag NCs与离子相互作用时产生的荧光变化可实现对离子浓度的检测. 实验结果表明, 在最佳实验条件下, Ni 2+及Hg 2+的浓度与DNA-Ag NCs荧光强度呈线性关系; 并验证了该荧光探针用于检测自来水样品中汞离子和镍离子的实用性. 由于以DNA为模板的DNA-Ag NCs能够响应多种刺激, 如Ni 2+, S 2-, Hg 2+和pH等, 利用相应的荧光强度可构建多输入的DNA-Ag NCs逻辑门及其组合逻辑门. 当荧光输出强度(Ioutput)>初始荧光强度(Iorigin)时, 设定输出为1, 采用各种刺激及其组合作为输入, 构建了YES, INH和组合的NOR与INH逻辑门. 而只有当IoutputIorigin时定义为输出为1, 可建立NOT, NOR, 组合的IMP加上NOR与AND逻辑门. 基于DNA-Ag NCs可以构建响应多元输入的复杂逻辑门, 实现化学信息的转变和传输, 在构建新的分子器件方面有较大应用前景.  相似文献   

11.
Molecular and supramolecular logic gates are candidates for computation at the nanoscale level. Nowadays all common logic operations can be mimicked with molecular devices based on chemical approaches. One step further towards molecular systems with increased logic capabilities is the addition or subtraction of binary digits. This Minireview describes recent developments to attain this goal, including bioinspired systems based on DNA and enzymes. Furthermore, chemical molecular logic gates are discussed and compared critically with regard to alternative concepts.  相似文献   

12.
DNA-based computers can potentially analyze complex sets of biological markers, thereby advancing diagnostics and the treatment of diseases. Despite extensive efforts, DNA processors have not yet been developed due, in part, to limitations in the ability to integrate available logic gates into circuits. We have designed a NAND gate, which is one of the functionally complete set of logic connectives. The gate's design avoids stem-loop-folded DNA fragments, and is capable of reusable operations in RNase H-containing buffer. The output of the gate can be translated into RNA-cleaving activity or a fluorescent signal produced either by a deoxyribozyme or a molecular beacon probe. Furthermore, three NAND-gate-forming DNA strands were crosslinked by click chemistry and purified in a simple procedure that allowed ≈1013 gates to be manufactured in 16 h, with a hands-on time of about 30 min. Two NAND gates can be joined into one association that performs a new logic function simply by adding a DNA linker strand. Approaches developed in this work could contribute to the development of biocompatible DNA logic circuits for biotechnological and medical applications.  相似文献   

13.
We report an experimental evaluation of the "input-output surface" for a biochemical AND gate. The obtained data are modeled within the rate-equation approach, with the aim to map out the gate function and cast it in the language of logic variables appropriate for analysis of Boolean logic for scalability. In order to minimize "analog" noise, we consider a theoretical approach for determining an optimal set for the process parameters to minimize "analog" noise amplification for gate concatenation. We establish that under optimized conditions, presently studied biochemical gates can be concatenated for up to order 10 processing steps. Beyond that, new paradigms for avoiding noise buildup will have to be developed. We offer a general discussion of the ideas and possible future challenges for both experimental and theoretical research for advancing scalable biochemical computing.  相似文献   

14.
Modern computer processors are based on semiconductor logic gates connected to each other in complex circuits. This study contributes to the development of a new class of connectable logic gates made of DNA in which the transfer of oligonucleotide fragments as input/output signals occurs upon hybridization of DNA sequences. The DNA strands responsible for a logic function form associates containing immobile DNA four‐way junction structures when the signal is high and dissociate into separate strands when the signal is low. A basic set of logic gates (NOT, AND, and OR) was designed. Two NOT gates, two AND gates, and an OR gate were connected in a network that corresponds to an XOR logic function. The design of the logic gates presented here may contribute to the development of the first biocompatible molecular computer.  相似文献   

15.
Recently, the design and development of nanozyme-based logic gates have received much attention. In this work, by engineering the stability of the nanozyme-catalyzed product, we demonstrated that the chromogenic system of 3, 3′, 5, 5′-tetramethylbenzidine (TMB) can act as a visual output signal for constructing various Boolean logic operations. Specifically, cerium oxide or ferroferric oxide-based nanozymes can catalyze the oxidation of colorless TMB to a blue color product (oxTMB). The blue-colored solution of oxTMB could become colorless by some reductants, including the reduced transition state of glucose oxidase and xanthine oxidase. As a result, by combining biocatalytic reactions, the color change of oxTMB could be controlled logically. In our logic systems, glucose oxidase, β-galactosidase, and xanthine oxidase acted as inputs, and the state of oxTMB solution was used as an output. The logic operation produced a colored solution as the readout signal, which was easily distinguished with the naked eye. More importantly, the study of such a decolorization process allows the transformation of previously designed AND and OR logic gates into NAND and NOR gates. We propose that this work may push forward the design of novel nanozyme-based biological gates and help us further understand complex physiological pathways in living systems.  相似文献   

16.
A battery of logic gates, “YES”, “AND” and “OR”, are constructed using magnetic beads (MBs) modified by DNA which consists of a substrate strand (S) and a signal strand on which the logic operates. Inputs stemming from micro-RNA (which represent three cancer biomarkers) take the place of signal DNA. The released signal strand self-assembles into the hemin-G-quadruplex complex (DNAzyme) that catalyzes a blue-green dye (ABTS+) from the precursor ABTS. This dye (quantified at a wavelength of 414 nm) represents the output signal for the various logic gates. The method allows quantitative detection of microRNA of three kinds of logic gates in the range of 5 nM–500 nM with detection limits of 3.8 nM, 4.9 nM, 5.4 nM. Boolean logic circuitry is also achieved following the principles of multilevel strand displacement. Based on strand displacement and magnetic separation, this work demonstrates the possibility of designing a logic system using micro-RNA in live cell lysate as inputs, and its potential application in DNA computation and cancer diagnosis.
Graphical abstract Schematic representation of a battery of logic gates and the Boolean logic circuitry based on strand displacement and magnetic separation responding to multiple microRNA in cancer cell lysate.
  相似文献   

17.
[structure: see text] Modified 1-benzylisoquinoline N-oxides can operate as molecular logic gates. The combination of dual-channel fluorescence emissions and the preferred interaction for selected chemical inputs allows one to design multifunction and self-reprogrammable molecular logic gates.  相似文献   

18.
A silicon field‐effect transistor is operated as a logic circuit by electrically addressing the ground and excited electronic states of an embedded single dopant atom. Experimental results—complemented by analytical and computational calculations—are presented. First, we show how a complete set of binary logic gates can be realized on the same hardware. Then, we show that these gates can be operated in parallel on the very same dopant up to the logic level of a full adder. To use the device not as a switch but as a full logic circuit, we make essential use of the excited electronic states of the dopant and of the ability to shift their energy by gating. The experimental ability to use two channels to measure the current flowing through the device and the conductance (dI/dV) allows for a robust reading of the output of the logic operations.  相似文献   

19.
Several logic gates and switches can be accessed from two different combinations of a single set of fluorophore, receptor and spacer components.  相似文献   

20.
Herein we report the "OR" and "AND" colorimetric logic gates for small molecules using split/integrated aptamers and unmodified gold nanoparticles, which generate visually observed outputs according to Boolean operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号