首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以2,2,6,6-四甲基庚二酮(tmd)为辅助配体,2,4-二取代基苯基-4-甲基喹啉(2,4-2R-mpq)为主配体,在主配体中苯基的2位和4位同时引入氟(F)、甲氧基(MeO)或三氟甲基(CF3),合成出3个铱磷光配合物(2,4-2R-mpq)2Ir(tmd)(R=F (1)、MeO(2)、CF3(3))。通过元素分析、核磁共振谱和单晶X射线衍射表征了配合物的组成和分子结构。通过紫外可见吸收光谱、光致发光光谱和理论计算对配合物的光物理性能进行了研究。结果表明:3个配合物的晶体均为三斜晶系,空间群均为■,呈稍微扭曲的八面体构型。配合物1、2和3在溶液状态下的发射波长分别为570、582和604 nm,溶液中量子产率分别为96%、80%和80%。在主配体中苯基的2位和4位同时引入F或MeO,配合物电子云发生聚集,而引入CF3,配合物的电子云分散。与配合物3相比,配合物1和2的发射波长发生了显著的蓝移。  相似文献   

2.
Time-dependent density functional theory with quadratic response methodology is used in order to calculate and compare spin–orbit coupling effects and the main mechanism of phosphorescence of the neutral Ir(ppy)3 and cationic [Ir(bpy)3]3+ tris-iridium compounds, [Ir(ppy)2(bpy)]+ and [Ir(2-phenylpyridine)2(4,4′-tert-butyl-2,2′-bipyridine]+ complexes, including also the recently synthesised [Ir(2-phenylpyridine)2(4,4′-dimethylamino-2,2′-bipyridine]+ and [Ir(2,4-difluorophenylpyridine)2(4,4′-dimethylamino-2,2′-bipyridine]+ dyes, where ppy = 2-phenylpyridine and bpy = 2,2′-bipyridine ligands. Comparison with the symmetric, lighter and more studied [Ru(bpy)3]2+ and [Rh(bpy)3]3+ complexes is also presented. Variations in phosphorescence lifetimes for Ir(ppy)3 and [Ir(bpy)3]3+ dyes as well as for the mixed cationic complexes are well reproduced by the quadratic response method. All the ortho-metalated iridium compounds exhibit strong phosphorescence, which is used in organic light-emitting diodes (OLEDs) to overcome the efficiency limit imposed by the formation of triplet excitons. The results from the first principle theoretical analysis of phosphorescence have helped to clarify the connections between the main features of electronic structure and the photo-physical properties of the studied heavy organometallic OLED materials.  相似文献   

3.
Zhaowu Xu  Xuemei Ma  He Tian 《Tetrahedron》2008,64(8):1860-1867
A series of iridium complexes with 2,5-diaryl-[1,3,4]-oxadiazole ligands were synthesized and their electrochemical, photophysical, and electroluminescent (EL) properties studied. It was found that electron-withdrawing or donating substituents on the phenyl ring affected the emission maxima. Complex 3, iridium(III) bis(2,5-bis-(2-hydroxyphenyl)-[1,3,4]oxadiazolato-C2′,N3) (acetyl acetonate), was characterized by single-crystal X-ray structural determination. Three organic light emitting diodes devices were fabricated, which showed stable green-yellow luminescence.  相似文献   

4.
We report on the synthesis and photophysical properties of blue emitting iridium(iii) complexes. The use of a negatively charged ligand, such as a triazolyl pyridine, allows a facile preparation, maintaining the high energy emission (blue region) of heteroleptic complexes. We discuss the role played by electron withdrawing substituents of a different nature and also how the substitution position of the same group influences the spectroscopical behaviour.  相似文献   

5.
A novel monomer, viz., bipyridyl-containing dicarboxylic acid, was synthesized from 6-pyridyl-3,4-pyridine dicarboxylic acid anhydride and 5-aminoisophthalic acid. Novel polymer macroligands, viz., copolyamides containing 5, 15, 30, and 45% of the bipyridyl side groups, were obtained based on this monomer by low-temperature polycondensation. Metal polymer complexes (MPC) with different Ir(ppy)2 content were synthesized by the reaction of the polymer ligand with the binuclear complex [Ir(ppy)2Cl]2 (ppy is 2-phenylpyridine) and their properties were studied.  相似文献   

6.
Iridium complexes with fluorene-modified phenylpyridine ligands are resistant to crystallization and can be used in the fabrication of single layer light emitting diodes.  相似文献   

7.
A new series of iridium(III) mixed ligand complexes TBA[Ir(ppy)(2)(CN)(2)] (1), TBA[Ir(ppy)(2)(NCS)(2)] (2), TBA[Ir(ppy)(2)(NCO)(2)] (3), and [Ir(ppy)(2)(acac)] (4) (ppy = 2-phenylpyridine; acac = acetoylacetonate, TBA = tetrabutylammonium cation) have been developed and fully characterized by UV-vis, emission, IR, NMR, and cyclic voltammetric studies. The lowest energy MLCT transitions are tuned from 463 to 494 nm by tuning the energy of the HOMO levels. These complexes show emission maxima in the blue, green, and yellow region of the visible spectrum and exhibit unprecedented phosphorescence quantum yields, 97 +/- 3% with an excited-state lifetimes of 1-3 micros in dichloromethane solution at 298 K. The near-unity quantum yields of these complexes are related to an increased energy gap between the triplet emitting state and the deactivating e(g) level that have been achieved by meticulous selection of ligands having strong ligand field strength. Organic light-emitting devices were fabricated using the complex 4 doped into a purified 4,4'-bis(carbazol-9-yl)biphenyl host exhibiting a maximum of the external quantum efficiencies of 13.2% and a power efficiency of 37 lm/W for the 9 mol % doped system.  相似文献   

8.
New iridium(III) ionic binuclear complexes, in which iridium-containing cyclometallated fragments are bound by a bridging bisphenanthroline ligand were synthesized. The compounds obtained show intensive photoluminescence of yellow and yellow-green colors.  相似文献   

9.
A series of bis(2-phenylbenzothiozolato-N,C(2'))iridium(acetylacetonate) [(bt)(2)Ir(acac)] derivatives, 1-4, were synthesized. Different substituents (CF(3), F, CH(3), OCH(3)) were introduced in the benzothiazole ring to study the substituent effect on the photophysical, electrochemical properties and electroluminescent performance of the complexes, and finally to select high-performance phosphors for use in organic light-emitting diodes (OLEDs). All complexes 1-4 and (bt)(2)Ir(acac) are orange-emitting with tiny spectral difference, despite the variation of the substituent. However, the phosphorescent quantum yield increases with the electron-withdrawing ability of the substituent. This is in contrast to the previous observation that the substituent in the phenyl ring bonded to the metal center of (bt)(2)Ir(acac) not only affected the luminescent quantum efficiency but also greatly tuned the emission color of the complexes. Quantum chemical calculations revealed that the substituents in this position do not make a significant contribution to both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which probably accounts for the fact that they do no strongly influence the bandgap and emission color of the complexes. Orange OLEDs were fabricated using 1-4 as doped emitters. The electron-withdrawing CF(3) and F groups favor improving the electroluminescence efficiency in comparison with that of the parent (bt)(2)Ir(acac), while electron-donating CH(3) and OCH(3) are not favorable for light emission. The complex 1 based OLED exhibited a maximum luminance efficiency of 54.1 cd A(-1) (a power efficiency of 24 lm W(-1) and an external quantum efficiency of 20%), which are among the best results ever reported for vacuum deposited orange OLEDs so far.  相似文献   

10.
Reaction of thiosemicarbazones of salicylaldehyde and 2-hydroxyacetophenone (H2L1 and H2L2) with [Ir(PPh3)3Cl] affords complexes of type [Ir(PPh3)2(L)(H)] (L = L1 or L2) in ethanol. A similar reaction carried out in toluene affords the [Ir(PPh3)2(L)(H)] complexes along with complexes of type [Ir(PPh3)2(L)Cl], where a chloride is coordinated to iridium instead of the hydride. The structure of the [Ir(PPh3)2(L2)(H)] and [Ir(PPh3)2(L2)Cl] complexes has been determined by X-ray crystallography. Crystal data for [Ir(PPh3)2(L2)(H)]: space group, P21/c; crystal system, monoclinic; a=12.110(2) Å, b=17.983(4) Å, c=18.437(4) Å, β=103.42(3)°, Z=4; R 1=0.0591, wR 2=0.1107. Crystal data for [Ir(PPh3)2(L2)Cl]: space group, P21/c; crystal system, monoclinic; a=17.9374(11) Å, b=19.2570(10) Å, c=24.9135(16) Å, β=108.145(5)°, Z=4; R 1=0.0463, wR 2=0.0901. In all the complexes the thiosemicarbazones are coordinated to the metal center as dianionic tridentate O, N, S-donors and the two triphenylphosphines are trans. The complexes are diamagnetic (low-spin d? 6, S=0) and show intense MLCT transitions in the visible region. Cyclic voltammetry on all the [Ir(PPh3)2(L)(H)] and [Ir(PPh3)2(L)Cl] complexes shows a quasi-reversible Ir(III)–Ir(IV) oxidation within 0.55–0.78 V vs. SCE followed by an irreversible oxidation of the thiosemicarbazone within 0.91–1.27 V vs. SCE. An irreversible reduction of the thiosemicarbazone is also observed within ?1.10 to ?1.23 V vs. SCE.  相似文献   

11.
12.
本文通过在离子液体BmimPF6中原位热聚合甲基丙烯酸甲酯得到了透明的离子液体凝胶。通过交流阻抗测定,当BmimPF6与甲基丙烯酸甲酯的质量比为5∶1时,离子液体凝胶的导电率为1.33×10-3Scm-1。将通过电化学沉积制得的三氧化钨(WO3)和普鲁士蓝(PB)修饰FTO电极,与上述离子液体凝胶一起组装得到了全固态的电致变色器件。原位吸收光谱数据显示所制得的电致变色器件,在±2V的工作电压下,具有稳定的电致变色响应,其着色和褪色时间分别为4.5s和4.0s,着色效率达190cm2C-1(λ=660nm)。  相似文献   

13.
14.
Transition metal complexes have emerged as promising candidates for applications in solid-state electroluminescent devices. These materials serve as multifunctional chromophores, into which electrons and holes can be injected, migrate and recombine to produce light emission. Their device characteristics are dominated by the presence of mobile ions that redistribute under an applied field and assist charge injection. As a result, an efficiency of 10 lm/W--among the highest efficiencies reported in a single layer electroluminescent device--was recently demonstrated. In this article we review the history of electroluminescence in transition metal complexes and discuss the issues that need to be addressed for these materials to succeed in display and lighting applications.  相似文献   

15.
Preparation of Ir(III) complexes using anisotropic 2,5-di(4-alkoxyphenyl)pyridine ligands leads to emissive, liquid-crystalline complexes containing bound Cl and dimethyl sulfoxide. Using analogous poly(alkoxy) ligands allows the preparation of bis(2-phenylpyridine)iridium(III) acac complexes, which are also mesomorphic. The observation of liquid crystallinity in octahedral complexes of this type is without precedent.  相似文献   

16.
Mixed (difluoro)phenylpyridine/(difluoro)phenylpyrazole tris-cyclometalated iridium complexes were prepared in order to study the effect of fluorination and the pyridine/pyrazole ratio on the emission and electrochemical properties. Increasing fluorination and replacement of pyridine by pyrazole both leads to a widening of the HOMO-LUMO gap and generally leads to a blue shift in emission.  相似文献   

17.
Electronic structures, absorptions and emissions of a series of (ppy)2Ir(acac) derivatives (ppy = 2- phenylpyridine; acac = acetoylacetonate) with fluoro substituent on ppy ligands were investigated theoretically. The ground and excited states geometries were fully optimized at B3LYP/LANL2DZ and CIS/LANL2DZ level, respectively. The HOMO is composed of d(Ir) and π(CN), while the LUMO is localized on CN ligand. The absorptions and emissions in CH2Cl2 media were calculated under the TD–DFT level with PCM model. The lowest-lying absorption of these complexes is dominantly attributed to metal-to-ligand and intraligand charge transfer (MLCT/ILCT) transitions and the emission of them originates from 3MLCT/3ILCT excited states. The absorption and emission of these complexes are blue-shifted by increasing the number of fluoro on phenyl, but the spectra are red-shifted by adding fluoro on pyridyl. While a single fluoro of different substituted site on phenyl results in different extent blue-shift to the spectra.  相似文献   

18.
Neutral heteroleptic mononuclear iridium(III) complexes with (2,4-difluoro)phenylpyridine and different pyridine-1,2,4-triazole ligands were synthesized and fully characterized. We investigated the effects of substituents in the 5-position of the triazole ring on the photophysical and electrochemical behavior. Increasing the electron-withdrawing capabilities generally leads to a lowering of the HOMO level with a consequent slight widening of the HOMO-LUMO gap and a blue shift in emission. The complexes reported exhibit high emission quantum yields and long luminescent lifetimes, typical of iridium(III) complexes, and most of them show reversible redox processes in solution. Also, many of the complexes reported here have been obtained as single crystals suitable for X-ray crystallography. Two of the complexes were further tested as phosphorescent dyes in OLED devices and showed high external quantum efficiencies (~7%) and color points better than the "standard" for blue iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C2']picolinate (FIrpic). We also report the full electrochemical investigation of FIrpic in different solvents.  相似文献   

19.
The phosphorescent binuclear iridium(III) complexes tetrakis(2-phenylpyridine)μ-(2,2':6',2'-terpyridine-6,6'-dicarboxylic acid)diiridium (Ir1) and tetrakis(2-(2,4-difluorophenyl) pyridine))μ-(2,2':6',2'-terpyridine-6,6'-dicarboxylic acid)diiridium (Ir2) were synthesized in a straightforward manner and characterized using X-ray diffraction, NMR, UV-vis absorption, and emission spectroscopy. The complexes have similar solution structures in which the two iridium centers are equivalent. This is further confirmed by the solid state structure of Ir2. The newly reported complexes display intense luminescence in dichloromethane solutions with maxima at 538 (Ir1) and 477 nm (Ir2) at 298 K (496 and 468 nm at 77 K, respectively) and emission quantum yields reaching ~18% for Ir1. The emission quantum yield for Ir1 is among the highest values reported for dinuclear iridium complexes. It shows only a 11% decrease with respect to the emission quantum yield reported for its mononuclear analogue, while the molar extinction coefficient is roughly doubled. This suggests that such architectures are of potential interest for the development of polymetallic assemblies showing improved optical properties. DFT and time-dependent-DFT calculations were performed on the ground and excited states of the complexes to provide insights into their structural, electronic, and photophysical properties.  相似文献   

20.
Temperature-dependent yellow-to-red colour changes of uranyl thiocyanate complexes with 1-alkyl-3-methylimidazolium cations have been studied by different spectroscopic methods and this phenomenon is attributed to changes in the local environment of the uranyl ion, including the coordination number, as well as to cation-anion interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号