首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of the Lewis basicity of alkali polysulfide fluxes (A(2)S(x)) (A = alkali) as a function of x on the respective reactivities of Pb and Sn with Ge was studied and found to be strong. Cs(4)Pb(4)Ge(5)S(16), K(2)PbGe(2)S(6), and K(4)Sn(3)Ge(3)S(14) could be prepared only under low basicity with S/A(2)S ratios of > or =11. These compounds display complex frameworks and are semiconductors. Cs(4)Pb(4)Ge(5)S(16) is luminescent with red emission.  相似文献   

2.
Upon reacting P(4)S(3) with AgAl(hfip)(4) and AgAl(pftb)(4) [hfip = OC(H)(CF(3))(2); pftb = OC(CF(3))(3)], the compounds Ag(P(4)S(3))Al(hfip)(4) 1 and Ag(P(4)S(3))(2)(+)[Al(pftb)(4)](-) 2 formed in CS(2) (1) or CS(2)/CH(2)Cl(2) (2) solution. Compounds 1 and 2 were characterized by single-crystal X-ray structure determinations, Raman and solution NMR spectroscopy, and elemental analyses. One-dimensional chains of [Ag(P(4)S(3))(x)](infinity) (x = 1, 1; x = 2, 2) formed in the solid state with P(4)S(3) ligands that bridge through a 1,3-P,S, a 2,4-P,S, or a 3,4-P,P eta(1) coordination to the silver ions. Compound 2 with the least basic anion contains the first homoleptic metal(P(4)S(3)) complex. Compounds 1 and 2 also include the long sought sulfur coordination of P(4)S(3). Raman spectra of 1 and 2 were assigned on the basis of DFT calculations of related species. The influence of the silver coordination on the geometry of the P(4)S(3) cage is discussed, additionally aided by DFT calculations. Consequences for the frequently observed degradation of the cage are suggested. An experimental silver ion affinity scale based on the solid-state structures of several weak Lewis acid base adducts of type (L)AgAl(hfip)(4) is given. The affinity of the ligand L to the silver ion increases according to P(4) < CH(2)Cl(2) < P(4)S(3) < S(8) < 1,2-C(2)H(4)Cl(2) < toluene.  相似文献   

3.
A new series of anhydrous mixed alkali-metal borophosphates-Li(2) Cs(2) B(2) P(4) O(15) (1), LiK(2) BP(2) O(8) (2), Li(3) K(2) BP(4) O(14) (3), and Li(3) Rb(2) BP(4) O(14) (4)-have been successfully synthesized by using the conventional solid-state reaction method. Compound 1 contains a novel fundamental building unit (FBU), [B(4) P(8) O(30) ], with B/P=1:2. Compound 2 contains an FBU of [B(2) P(4) O(16) ] with B/P=1:2. Compounds 3 and 4 are isotypic, and they have a [B(P(2) O(7) )(2) ] unit as their FBU. In all four compounds, their FBUs are connected through corner sharing to generate layered anionic partial structures, and then further linked with metallic polyhedra to form three-dimensional (3D) frameworks. Most interestingly, three of the four compounds contain direct P-O-P connections in their structures, which is extremely rare among borophosphates. Thermal analyses, IR spectroscopy, and UV/Vis/near-IR diffuse reflectance spectroscopy have also been performed on the four title compounds.  相似文献   

4.
Whangbo MH  Koo HJ 《Inorganic chemistry》2002,41(13):3570-3577
The magnetic structures of the Cu(2)O(3) spin lattices present in Cu(4)O(3) and Ag(2)Cu(2)O(3) were analyzed by studying their spin exchange interactions on the basis of spin dimer analysis. Calculations of spin exchange parameters were calibrated by studying LiCuVO(4) whose intrachain and interchain antiferromagnetic spin exchange parameters are known experimentally. The magnetic phase transition of Cu(4)O(3) at 42.3 K doubles the unit cell along each crystallographic direction. The spin arrangements of the Cu(2)O(3) lattice consistent with this experimental observation are different from conventional antiferromagnetic ordering. Our analysis indicates that spin fluctuation should occur in Cu(4)O(3), low-dimensional magnetism should be more important than magnetic frustration in Cu(4)O(3), and Ag(2)Cu(2)O(3) and Cu(4)O(3) should have similar structural and magnetic properties.  相似文献   

5.
The photochemistry of Fe(CO)5 (5) has been studied in heptane, supercritical (sc) Ar, scXe, and scCH4 using time-resolved infrared spectroscopy (TRIR). 3Fe(CO)4 ((3)4) and Fe(CO)3(solvent) (3) are formed as primary photoproducts within the first few picoseconds. Complex 3 is formed via a single-photon process. In heptane, scCH4, and scXe, (3)4 decays to form (1)4 x L (L = heptane, CH4, or Xe) as well as reacting with 5 to form Fe2(CO)9. In heptane, 3 reacts with CO to form (1)4 x L. The conversion of (3)4 to (1)4 x L has been monitored directly for the first time (L = heptane, kobs = 7.8(+/- 0.3) x 10(7) s(-1); scCH4, 5(+/- 1) x 10(6) s(-1); scXe, 2.1(+/- 0.1) x 10(7) s(-1)). In scAr, (3)4 and 3 react with CO to form 5 and (3)4, respectively. We have determined the rate constant (kCO = 1.2 x 10(7) dm3 mol(-1) s(-1)) for the reaction of (3)4 with CO in scAr, and this is very similar to the value obtained previously in the gas phase. Doping the scAr with either Xe or CH4 resulted in (3)4 reacting with Xe or CH4 to form (1)4 x Xe or (1)4 x CH4. The relative yield, [(3)4]:[3] decreases in the order heptane > scXe > scCH4 > scAr, and pressure-dependent measurements in scAr and scCH4 indicate an influence of the solvent density on this ratio.  相似文献   

6.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

7.
The C(s) symmetry reaction of the H(2) molecule on a Pt(4) (111) clusters, has been studied using ab initio multiconfiguration self-consistent field plus extensive multireference configuration interaction variational and perturbative calculations. The H(2) interaction by the vertex and by the base of a tetrahedral Pt(4) cluster were studied in ground and excited triplet and singlet states (closed and open shells), where the reaction curves are obtained through many avoided crossings. The Pt(4) cluster captures and activates the hydrogen molecule; it shows a similar behavior compared with other Pt(n) (n=1,2,3) systems. The Pt(4) cluster in their lowest five open and closed shell electronic states: (3)B(2), (1)B(2), (1)A(1) (3)A(1), (1)A(1), respectively, may capture and dissociate the H(2) molecule without activation barriers for the hydrogen molecule vertex approach. For the threefolded site reaction, i.e., by the base, the situation is different, the hydrogen adsorption presents some barriers. The potential energy minima occur outside and inside the cluster, with strong activation of the H-H bond. In all cases studied, the Pt(4) cluster does not absorb the hydrogen molecule.  相似文献   

8.
To model the Ti-olefin interaction in the putative [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(R')(olefin)(+) intermediates in "constrained geometry" Ti-catalyzed olefin polymerization, chelated alkoxide olefin complexes [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))(+) have been investigated. The reaction of [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(2) (1a,b; R = H, Me) with HOCMe(2)CH(2)CH(2)CH=CH(2) yields mixtures of [eta(5)-C(5)R(4)SiMe(2)NH(t)Bu]TiMe(2)(OCMe(2)CH(2)CH(2)CH=CH(2)) (2a,b) and [eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]TiMe(OCMe(2)CH(2)CH(2)CH=CH(2)) (3a,b). The reaction of 2a/3a and 2b/3b mixtures with B(C(6)F(5))(3) yields the chelated olefin complexes [[eta(5): eta(1)-C(5)R(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][MeB(C(6)F(5))(3)] (4a,b; 71 and 89% NMR yield). The reaction of 2b/3b with [Ph(3)C][B(C(6)F(5))(4)] yields [[eta(5): eta(1)-C(5)Me(4)SiMe(2)N(t)Bu]Ti(OCMe(2)CH(2)CH(2)CH=CH(2))][B(C(6)F(5))(4)] (5b, 88% NMR yield). NMR studies establish that 4a,b and 5b exist as mixtures of diastereomers (isomer ratios: 4a/4a', 62/38; 4b/4b', 75/25; 5b/5b', 75/25), which differ in the enantioface of the olefin that is coordinated. NMR data for these d(0) metal olefin complexes show that the olefin coordinates to Ti in an unsymmetrical fashion primarily through C(term) such that the C=C pi bond is polarized with positive charge buildup on C(int). Dynamic NMR studies show that 4b/4b' undergoes olefin face exchange by a dissociative mechanism which is accompanied by fast inversion of configuration at Ti ("O-shift") in the olefin-dissociated intermediate. The activation parameters for the conversion of 4b to 4b' (i.e., 4b/4b' face exchange) are: DeltaH = 17.2(8) kcal/mol; DeltaS = 8(1) eu. 4a/4a' also undergoes olefin face exchange but with a lower barrier (DeltaH = 12.2(9) kcal/mol; DeltaS = -2(3) eu), for the conversion of 4a to 4a'.  相似文献   

9.
X-ray structural data for the cubane-type clusters [Mo3CuS4(dmpe)3Cl4](+) and Mo3NiS4(dmpe)3Cl4 (dmpe = 1,2-bis(dimethylphosphino)ethane) with 16 metal electrons have been compared with optimized structural parameters calculated using "ab initio" methodologies. Compound Mo3NiS4(dmpe)3Cl4 crystallizes in the cubic noncentrosymmetric space group P213 with a Mo-Ni distance of 2.647 Angstrom, that is 0.2 Angstrom shorter than the Mo-Cu bond length in the isoelectronic copper cluster. The best agreement between theory and experiments has been obtained using the B3P86 method. In order to validate the B3P86 results, accurate infrared and Raman spectra have been acquired and the vibrational modes associated to the cubane-type Mo3M'S4 (M' = Cu or Ni) unit have been assigned theoretically. The electronic changes taking place when incorporating the M' into the Mo3S4 unit have been analyzed from a theoretical and experimental perspective. The bond dissociation energies between M'-Cl and Mo3S4 fragments show that formation of [Mo3CuS4(dmpe)3Cl4](+) is 135 kcal/mol energetically less favorable than the Ni incorporation. The more robust nature of the Mo3NiS4 fragment has been confirmed by mass spectrometry. The X-ray photoelectron spectroscopy (XPS) spectra of the trimetallic and tetrametallic complexes have been measured and the obtained binding energies compared with the computed electronic populations based on topological approaches of the electron localization function (ELF). The energies and shapes of the Cu 2p and Ni 2p lines indicate formal oxidation states of Cu(I) and Ni(II). However, the reductive addition of nickel into [Mo3S4(dmpe)3Cl3](+) causes a small decrease in the Mo 3d binding energies. This fact prevents an unambiguous assignment of an oxidation state in a conventional way, a circumstance that has been analyzed through the covariance of the electronic populations associated to the C(M') core and V(Mo3Ni) and V(S(2)') valence basins where Mo3NiS4 is a particularly electronically delocalized chemical entity.  相似文献   

10.
EPR study on the ligand-exchange reaction between bis(diethyldiselenocarbamato)copper(II), Cu(Et2dsc)2, and bis(octyldithiocarbonato)copper(II), Cu(octxant)2, in CH2Cl2, CHCl3, CCl4, C6H6 and C6H5.CH3 is reported for the first time. Mixing of equimolar amounts of the parents (chromophores CuSe4 and CuS4, respectively) in C6H6, C6H5.CH3 and CH2Cl2 makes EPR signals of both parents superimposed by the spectrum of a mixed-chelate Cu(xant)(dsc) complex (chromophore CuS2Se2). A new additional EPR spectrum appears in CHCl3 or CCl4 due to a five-coordinate mixed-ligand complex with the chromophore Cu(S3Se)S as follows by comparing the g-values of parents and mixed-ligand complexes. The appearance of this complex could be explained having in mind donor-acceptor properties of complexes, solvents and the resultant reaction of Cu(octxant)2 with the ester of diselenocarbamic acid yielded in Cu(Et2dsc)2 destruction by CCl4 or CHCl3.  相似文献   

11.
There are only a few reports on the measurement of the energy of the low-lying (3)deltadelta state of quadruply bonded bimetallic complexes, and the direct observation of the (1)deltadelta excited electronic state was only recently reported. In the quadruply bonded bimetallic complexes reported to date, luminescence arises from their (1)deltadelta excited state, and the (3)deltadelta state is nonemissive. Here we report the luminescence of Re(2)Cl(2)(p-OCH(3)form)(4) [p-OCH(3)form = (p-CH(3)OC(6)H(4))NCHN(p-CH(3)OC(6)H(4))(-)] observed upon 400-460 nm excitation with maxima at 820 nm (CH(2)Cl(2), tau = 1.4 micros) and 825 nm (CH(3)CN, tau = 1.3 micros) at 298 K. From the large Stokes shift, the vibronic progression at 77 K, the quenching by O(2), the long lifetime, and the calculated energy of the (3)deltadelta state, the luminescence of Re(2)Cl(2)(p-OCH(3)form)(4) and the corresponding transient absorption signal are assigned as arising from the (3)deltadelta ((3)A(2u)) excited state of the complex.  相似文献   

12.
黑鳗藤中C_(21)甾体苷的分离和结构测定   总被引:4,自引:0,他引:4  
张如松  叶益萍  李晓誉  张晓颖 《化学学报》2003,61(12):1991-1996
从萝藦科植物黑鳗藤[Stephanotis mucronta (Blanco) Merr.]的藤茎中分离 到三个C_(21)甾体去氧糖苷(1) - (3)。通过化学降解和波谱技术,确定它们 的化学结构依次为:12-O-惕各酰基-20-O-乙酰基肉珊瑚苷元3-O-β-黄夹吡喃糖基 -(1→4)-β-磁麻吡喃糖基-(1→4)-β-磁麻吡喃糖苷(1),5,6-双氢-12-O- 乙酰基-20-O-惕各酰基肉珊瑚苷元3-O-β-黄夹吡喃糖基-(1→4)-β-磁麻吡喃糖 基-(1→4)-β-磁麻吡喃糖基(2);12-O-乙酰基-20-O(N-甲基)邻氨基苯甲酰 基肉珊瑚甘元3-O-β-黄夹吡喃糖基-(1→4)-β-磁麻吡喃糖基-(1→4)-β-磁 麻吡喃糖甘(3)。其中1和2为新化合物,分别命名为mucronatoside A, mucrontoside B。3为已知化合物stephanoside E,系首次从该植物中分离得到。  相似文献   

13.
The rigid tris- and bis(catecholamide) ligands H(6)A, H(4)B and H(4)C form tetrahedral clusters of the type M(4)L(4) and M(4)L(6) through self-assembly reactions with tri- and tetravalent metal ions such as Ga(III), Fe(III), Ti(IV) and Sn(IV). General design principles for the synthesis of such clusters are presented with an emphasis on geometric requirements and kinetic and thermodynamic considerations. The solution and solid-state characterization of these complexes is presented, and their dynamic solution behavior is described. The tris-catecholamide H(6)A forms M(4)L(4) tetrahedra with Ga(III), Ti(IV), and Sn(IV); (Et(3)N)(8)[Ti(4)A(4)] crystallizes in R3(-)c (No. 167), with a = 22.6143(5) A, c = 106.038(2) A. The cluster is a racemic mixture of homoconfigurational tetrahedra (all Delta or all Lambda at the metal centers within a given cluster). Though the synthetic procedure for synthesis of the cluster is markedly metal-dependent, extensive electrospray mass spectrometry investigations show that the M(4)A(4) (M = Ga(III), Ti(IV), and Sn(IV)) clusters are remarkably stable once formed. Two approaches are presented for the formation of M(4)L(6) tetrahedral clusters. Of the bis(catecholamide) ligands, H(4)B forms an M(4)L(6) tetrahedron (M = Ga(III)) based on an "edge-on" design, while H(4)C forms an M(4)L(6) tetrahedron (M = Ga(III), Fe(III)) based on a "face-on" strategy. K(5)[Et(4)N](7)[Fe(4)C(6)] crystallizes in I43(-)d (No. 220) with a = 43.706(8) A. This M(4)L(6) tetrahedral cluster is also a racemic mixture of homoconfigurational tetrahedra and has a cavity large enough to encapsulate a molecule of Et(4)N(+). This host-guest interaction is maintained in solution as revealed by NMR investigations of the Ga(III) complex.  相似文献   

14.
The DelPhi program package has been used to confirm that the span in reduction potentials among high-potential Fe(4)S(4) ferredoxins must be mainly ascribed to the net protein charges arising from acidic and basic residues. Subsequently, the order of the individual reduction potentials of the iron ions in Fe(2)S(2) ferredoxins as found from NMR spectroscopy was explained mainly on the basis of different solvation contributions to the electrostatic potential. The individual reduction potentials of the iron ions in high-potential Fe(4)S(4) ferredoxins, again available from NMR spectroscopy, are only qualitatively reproduced. It is proposed that the protein triggers a distortion in the cluster which would be a further contribution to the electrochemical inequivalence of the individual iron ions.  相似文献   

15.
Huang Q  Wu X  Wang Q  Sheng T  Lu J 《Inorganic chemistry》1996,35(4):893-897
Synthetic methods for [Et(4)N](4)[W(4)Cu(4)S(12)O(4)] (1), [Et(4)N](4)[Mo(4)Cu(4)S(12)O(4)] (2), [W(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (3), and [Mo(4)Cu(4)S(12)O(4)(CuTMEN)(4)] (4) are described. [Et(4)N](2)[MS(4)], [Et(4)N](2)[MS(2)O(2)], Cu(NO(3))(2).3H(2)O, and KBH(4) (or Et(4)NBH(4)) were used as starting materials for the synthesis of 1 and 2. Compounds 3 and 4 were produced by reaction of [Et(4)N](2)[WOS(3)], Cu(NO(3))(2).3H(2)O, and TMEN and by reaction of [Me(4)N](2)[MO(2)O(2)S(8)], Cu(NO(3))(2).3H(2)O, and TMEN, respectively. Crystal structures of compounds 1-4 were determined. Compounds 1 and 2 crystallized in the monoclinic space group C2/c with a = 14.264(5) ?, b = 32.833(8) ?, c = 14.480(3) ?, beta = 118.66(2) degrees, V = 5950.8(5) ?(3), and Z = 4 for 1 and a = 14.288(5) ?, b = 32.937(10) ?, c = 14.490(3) ?, beta = 118.75(2) degrees, V = 5978.4(7) ?(3), and Z = 4 for 2. Compounds 3 and 4 crystallized in the trigonal space group P3(2)21 with a = 13.836(6) ?, c = 29.81(1) ?, V = 4942(4) ?(3), and Z = 3 for 3 and a = 13.756(9) ?, c = 29.80(2) ?, V = 4885(6) ?(3), and Z = 3 for 4. The cluster cores have approximate C(2v) symmetry. The anions of 1 and 2 may be viewed as consisting of two butterfly-type [CuMOS(3)Cu] fragments bridged by two [MOS(3)](2-) groups. Eight metal atoms in the anions are arranged in an approximate square configuration, with a Cu(4)M(4)S(12) ring structure. Compounds 3 and 4 can be considered to consist of one [M(4)Cu(4)S(12)O(4)](4-) (the anions of 1 and 2) unit capped by Cu(TMEN)(+) groups on each M atom; the Cu(TMEN)(+) groups extend alternately up and down around the Cu(4)M(4) square. The electronic spectra of the compounds are dominated by the internal transitions of the [MOS(3)](2-) moiety. (95)Mo NMR spectral data are investigated and compared with those of other compounds.  相似文献   

16.
Crystals of Ba(2)FeO(4) and Ba(3)FeO(5), grown from a "self-sealing" KOH-Ba(OH)(2) flux, have been characterized by single-crystal X-ray diffraction, M?ssbauer spectroscopy, and magnetic measurements. Ba(2)FeO(4) forms nonmerohedral twinned crystals with the monoclinic space group P2(1)/n, a = 6.034(2) A, b = 7.647(2) A, c = 10.162(3) A, beta = 92.931(6) degrees, and Z = 4. Ba(3)FeO(5) crystallizes in the orthorhombic space group Pnma, with a = 10.301(1) A, b = 8.151(1) A, c = 7.611(1) A, and Z = 4. While both compounds feature discrete FeO(4)(4-) tetrahedra, the anion found in Ba(2)FeO(4) has shorter Fe-O bonds and is significantly distorted relative to the Ba(3)FeO(5) anion. An iron valence of 4+ was confirmed by magnet susceptibility measurements and by the low-temperature isomer shifts of -0.152 and -0.142 mm/s relative to alpha-iron for Ba(2)FeO(4) and Ba(3)FeO(5), respectively.  相似文献   

17.
The initial employment of 2-(hydroxymethyl)pyridine for the synthesis of Mn/Ln (Ln = lanthanide) and Mn/Y clusters, in the absence of an ancillary organic ligand, has afforded a family of tetranuclear [Mn(III)(2)M(III)(2)(OH)(2)(NO(3))(4)(hmp)(4)(H(2)O)(4)](NO(3))(2) (M = Dy, 1; Tb, 2; Gd, 3; Y; 4) anionic compounds. 1-4 possess a planar butterfly (or rhombus) core and are rare examples of carboxylate-free Mn/Ln and Mn/Y clusters. Variable-temperature dc and ac studies established that 1 and 2, which contain highly anisotropic Ln(III) atoms, exhibit slow relaxation of their magnetization vector. Fitting of the obtained magnetization (M) versus field (H) and temperature (T) data for 3 by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) showed the ground state to be S = 3. Complex 4 has an S = 0 ground state. Fitting of the magnetic susceptibility data collected in the 5-300 K range for 3 and 4 to the appropriate van Vleck equations revealed, as expected, extremely weak antiferromagnetic interactions between the paramagnetic ions; for 3, J(1) = -0.16(2) cm(-1) and J(2) = -0.12(1) cm(-1) for the Mn(III)···Mn(III) and Mn(III)···Gd(III) interactions, respectively. The S = 3 ground state of 3 has been rationalized on the basis of the spin frustration pattern in the molecule. For 4, J = -0.75(3) cm(-1) for the Mn(III)···Mn(III) interaction. Spin frustration effects in 3 have been quantitatively analyzed for all possible combinations of sign of J(1) and J(2).  相似文献   

18.
A macrocyclic superoxochromium complex L(2)(H(2)O)CrOO(2+)(L(2)=meso-Me(6)-[14]aneN(4)) is generated from L(2)Cr(H(2)O)(2)(2+) and O(2) with k(on)=(2.80 +/- 0.07)x 10(7) M(-1) s(-1). One-electron reduction of L(2)(H(2)O)CrOO(2+) produces a transient hydroperoxo complex that readily undergoes intramolecular conversion to L(2)Cr(v), k(1)= 1.00 +/- 0.01 s(-1) in acidic aqueous solutions, and 0.273 +/- 0.010 s(-1) at pH >7, with an apparent pK(a) of 5.9. The decay of L(2)Cr(v) in the pH range 1.3-6.2 obeys the rate law, -d[L(2)Cr(v)]/dt= (0.0080 (+/- 0.0049)+ 8.19 (+/- 0.13)[H(+)])[L(2)Cr(v)]. Both the kinetics of formation and lifetime of L(2)Cr(v) are significantly different from those for the closely related [14]aneN(4) complex. The X-ray structure of the parent Cr(iii) complex, [L(2)Cr(H(2)O)(2)](ClO(4))(3).4H(2)O, shows that the macrocyclic ligand adopts the most stable, "two up-two down" configuration around the nitrogens.  相似文献   

19.
20.
Jiang HL  Ma E  Mao JG 《Inorganic chemistry》2007,46(17):7012-7023
Solid-state reactions of lanthanide(III) oxide (and/or lanthanide(III) oxychloride), MoO3 (or WO3), and TeO2 at high temperature lead to eight new luminescent compounds with four different types of structures, namely, Ln2(MoO4)(Te4O10) (Ln = Pr, Nd), La2(WO4)(Te3O7)2, Nd2W2Te2O13, and Ln5(MO4)(Te5O13)(TeO3)2Cl3 (Ln = Pr, Nd; M = Mo, W). The structures of Ln2(MoO4)(Te4O10) (Ln = Pr, Nd) feature a 3D network in which the MoO4 tetrahedra serve as bridges between two lanthanide(III) tellurite layers. La2(WO4)(Te3O7)2 features a triple-layer structure built of a [La2WO4]4+ layer sandwiched between two Te3O72- anionic layers. The structure of Nd2W2Te2O13 is a 3D network in which the W2O108- dimers were inserted in the large tunnels of the neodymium(III) tellurites. The structures of Ln5(MO4)(Te5O13)(TeO3)2Cl3 (Ln = Pr, Nd; M = Mo, W) feature a 3D network structure built of lanthanide(III) ions interconnected by bridging TeO32-, Te5O136-, and Cl- anions with the MO4 (M = Mo, W) tetrahedra capping on both sides of the Ln4 (Ln = Pr, Nd) clusters and the isolated Cl- anions occupying the large apertures of the structure. Luminescent studies indicate that Pr2(MoO4)(Te4O10) and Pr5(MO4)(Te5O13)(TeO3)2Cl3 (M = Mo, W) are able to emit blue, green, and red light, whereas Nd2(MoO4)(Te4O10), Nd2W2Te2O13, and Nd5(MO4)(Te5O13)(TeO3)2Cl3 (M = Mo, W) exhibit strong emission bands in the near-IR region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号