首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, stress-intensity factors for a two-dimensional problem are determined. Strips with multiple symmetrical edge cracks in tension are investigated. A simple analytical estimation is compared to numerical results. The influence of penetration of the crack faces and mixed-mode loading on the numerical results is investigated. A simple method to estimate stress-intensity factors for strips with multiple edge cracks is proposed.  相似文献   

2.
A theoretical analysis is given for the slip-line field in a three-point bend specimen containing a sharp short crack. It is shown that the hydrostatic stresses are larger for deeper cracks. These results support the observation that the crack opening displacement at the initiation of a ductile tear is bigger for shallow cracks than deep ones. An analytical relationship for the ratio of plastic crack tip opening to crack mouth opening displacement is also established which is in agreement with experimental replica measurements. Application of the analysis to practical crack opening displacement measurements for shallow cracks is discussed.  相似文献   

3.
提出了双周期平行四边形排列裂纹反平面问题的有限元方法,通过对单位胞元引入周期边界条件,在裂纹尖端采用奇异单元,解决了有限元分析这类问题的效率和精度问题.利用Ansys软件计算,在各种有解析解对照的情形下,应力强度因子的相对误差都在0.2%以内.与现有通常限于对称阵列的双周期裂纹的研究相比,本文发展的方法适用于一般的非对称平行四边形裂纹阵列.算例揭示了行向裂纹间的相互干涉放大应力强度因子,而叠向裂纹间的作用相互屏蔽.对于平行四边形阵列的情形,这两种相反的干涉效应使应力强度因子与裂纹错动参数间呈现非单调依赖关系.  相似文献   

4.
脆性材料内部含有大量裂纹,当某一裂纹扩展时,其他裂纹会对扩展裂纹产生影响。为了研究冲击载荷下,脆性材料内两裂纹的相互影响、连通规律及裂纹尖端应力强度因子的变化规律,利用有机玻璃板制作了含非平行双裂纹的实验试件,利用落板冲击设备进行了中低速冲击实验,结合有限元分析软件ABAQUS计算出裂纹尖端应力强度因子,利用有限差分软件AUTODYN进行了动态数值模拟研究,并将其模拟结果与实验结果进行对比分析。实验及模拟结果表明:裂纹破坏形态与AUTODYN数值模拟破坏形态基本一致;试件的断裂形态随着两裂纹间距不同而不同;裂纹间的相互影响程度随着裂纹间间距增大而减小;裂纹尖端应力强度因子KI随着裂纹间距的增大而减小,而KII随着裂纹间距增大而增大。  相似文献   

5.
Multiple cracks interaction plays an important role in fracture behavior of materials. A number of studies have been devoted to analytical and numerical analyses of the doubly periodic arrays of cracks. A very natural and highly accurate solution procedure is proposed to describe the interaction effect among the doubly periodic rectangular-shaped arrays of cracks. The proposed solution is implemented in the framework of continuously distributed dislocation model and singular integral equation approach. The accuracy of this solution is proved through a comparison of results from the present simulation and known closed form solutions. Further, the interaction effects among the periodic cracks on the plastic zone size and crack tip opening displacement are studied. It is found that the interaction distance among the vertical and horizontal periodic cracks is quite different.  相似文献   

6.
A first order perturbation method is presented which predicts the changes in resonance frequencies of a structure resulting from cracks, notches or other geometrical changes. The eigenfrequency changes due to a crack are shown to be dependent on the strain energy of a static solution which is easily obtainable for small cracks and other small cut-outs. The method has been tested for three different cases, and the predicted results correlate very closely to experimental and numerical results.  相似文献   

7.
以秦山三期核电工程反应堆地段作为研究对象 ,针对节理裂隙在岩体中的分布具有随机性的特点 ,运用随机方法对其分布规律进行了研究。根据实测的节理裂隙产状、间距及迹线长度 ,推断节理裂隙概率分布特征。同时充分考虑到节理裂隙分布的不均匀性和方向性等特点 ,采用非平稳态随机过程模拟节理裂隙间距 ,通过 Monte- Carlo方法得到等效的节理裂隙网络。根据统计和拟合的结果 ,对反应堆地段岩体的节理裂隙进行了评价。  相似文献   

8.
In this paper the problem of a finite plate containing collinear surface cracks is considered. The problem is solved by using the line spring model with plane elasticity and Reissner's plate theory. The main purpose of the study is to investigate the effect of interaction between two cracks or between cracks and stress-free plate boundaries on the stress intensity factors and to provide extensive numerical results which may be useful in applications. First, some sample results are obtained and are compared with the existing finite element results. Then the problem is solved for a single (internal) crack, two collinear cracks and two corner cracks for wide range of relative dimensions. Particularly in corner cracks the agreement with the finite element solution is surprisingly very good. The results are obtained for semielliptic and rectangular crack profiles which may, in practice, correspond to two limiting cases of the actual profile of a subcritically growing surface crack.  相似文献   

9.
Existing studies on the fracture of cracked piezoelectric materials have been limited mostly to the electrically impermeable and permeable crack models, which represent the limiting cases of the physical boundary condition along the crack surfaces. This paper presents a study on the electromechanical behaviour of interacting dielectric cracks in piezoelectric materials. The cracks are filled with dielectric media and, as the result, the electric boundary condition along the crack surfaces is governed by the opening displacement of the cracks. The formulation of this nonlinear problem is based on simulating the cracks using distributed dislocations and solving the resulting nonlinear singular integral equations. Multiple deformation modes are observed. A solution technique is developed to determine the desired deformation mode of the interacting cracks. Numerical results are given to show the effect of the interaction between parallel cracks. Attention is paid to the transition between permeable and impermeable models with increasing crack opening.  相似文献   

10.
Fracture behaviors of piezoelectric materials   总被引:2,自引:0,他引:2  
Theoretical analyses and experimental observations of the failure and fracture behaviors of piezoelectric materials are presented. The theoretical analyses are based on the Stroh formalism. A strip dielectric breakdown model is proposed to estimate the effect of electrical non-linearity on the piezoelectric fracture of electrically insulated cracks. The reviewed experiments include the indentation fracture test, the bending test on smooth samples, the fracture test on pre-notched or pre-cracked samples, the environment-assisted fracture test, etc. For electrically insulated cracks, the experimental results show a complicated fracture behavior under combined electrical and mechanical loading. Fracture data are greatly scattered when a static electric field is applied. For electrically conducting cracks, the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate (PZT) ceramics. A charge-free zone model is introduced to understand the failure behavior of conducting cracks in the depoled lead zirconate titanate ceramics under electrical and/or mechanical loading. These theoretical and experimental results indicate that fracture mechanics concepts are useful in the study of the failure behaviors of piezoelectric materials.  相似文献   

11.
The fracture behavior of a cracked strip under antiplane mechanical and inplane electrical loading is studied. A functionally graded piezoelectric strip with exponential material gradation is under consideration. The mechanical and electrical loading is combined via loading coupling factor. The problem of a graded piezoelectric strip containing a screw dislocation is solved. This solution results in stress and electric displacement components with Cauchy singularity. Based on the solution achieved for the dislocation, the distributed dislocation technique (DDT) is utilized to form any geometry of multiple cracks and analyze the behavior of a cracked strip under antiplane mechanical and inplane electrical loading. This technique is capable of the analysis of a strip with a system of interacting cracks. Several examples including strips with single crack, two straight cracks and two curved cracks are presented.  相似文献   

12.
确定裂纹体等效弹性模量的边界元方法   总被引:2,自引:2,他引:2  
采用边界元方法计算含有序分布裂纹的裂纹体在压缩载荷作用下的等效弹性模量,利用一种能适当考虑裂纹有间相作用的自洽理论,建立了相应的迭代格式,通过算例研究了裂纹方向,裂纹面间摩擦系数对裂纹体等效弹性模量的影响。  相似文献   

13.
The development of damage in cross-ply Hercules AS4/3502 graphite/epoxy laminates has been investigated. Specific endeavors were to identify the mechanisms for initiation and growth of matrix cracks and to determine the effect of matrix cracking on the stiffness loss in cross-ply laminates. Two types of matrix cracks were identified. These include both straight and curved cracks. The experimental study of matrix crack damage revealed that the curved cracks formed after the straight cracks and followed a repeatable pattern of location and orientation relative to the straight cracks. Therefore, it was postulated that the growth mechanism for curved cracks is driven by the stress state resulting from the formation of the straight cracks. This phenomenon was analytically investigated by a finite-element model of straight cracks in a cross-ply laminate. The finite-element results provide supporting evidence for the postulated growth mechanism. The experimental study also revealed that the number of curved cracks increased with the number of consecutive 90-deg plies. Finally, experimental results show as much as 10-percent degradation in axial stiffness due to matrix cracking in cross-ply graphite/epoxy laminates.  相似文献   

14.
裂纹分析中的单节点二次边界元   总被引:2,自引:2,他引:2  
提出一种新的边界单元;单节点二次元,利用这种单元,位移及其沿边界的切向导数在正规单元端点的连续条件自然得到满足,单节点二次元能很好地模拟角点处面力多值条件,特殊裂纹尖端单节点二次单元包括近裂纹尖端位移近似级数展开第二项。由于每个单元只有一个节点,计算程序大大简化。对直裂纹,圆弧裂纹和边裂纹进行了计算。数值计算结果表明,单节点二次边界单元计算精度高,收敛性好。  相似文献   

15.
This work analyzes the elastic interaction between two spherical-cap cracks present along the outer surface of a hollow particle embedded in a dissimilar medium under remote uniaxial tensile loading. A semi-analytical approach based on an enriched Galerkin method is adopted to determine stress and deformation fields as functions of particle wall thickness and cracks’ configuration. The present analysis is limited to multiple interfacial spherical-cap cracks; that is, crack propagation is restrained to the particle-matrix interface and possibility of crack kinking in the matrix is not considered. Interfacial crack growth characteristics, conditions for stable crack propagation, equal crack growth, and shielding are established through energy release rate analysis. The study is relevant to the analysis of tensile and flexural failure of syntactic foams used in marine and aerospace applications. Results specialized to glass-vinyl ester syntactic foams demonstrate that particle wall thickness can be used to control crack stability and growth characteristics as well as tailoring the magnitude of the shielding phenomenon. Predictions are compared to finite element findings for validation and to results for penny-shaped cracks to elucidate the role of crack curvature.  相似文献   

16.
The equivalent elastic modulus of cracked bodies with orderly distributed cracks was computed with the boundary element method. A practical self-consistent scheme has been proposed in consideration of the mutual interaction effects of the cracks. The influence of friction coefficients and orientation of cracks has been investigated. Some computational examples have been given, and the results show that the proposed method is adequate and the scheme is efficient.This project is supported by the National Natural Science Foundation of China.  相似文献   

17.
Residual stresses emerge quite often in real structures due to the various manufacturing processes such as, welding, forming, cutting, milling, etc. In such cases, development of cracks at regions influenced by manufacturing operations demand additional attention. In the present work a numerical methodology has been developed, based on three-dimensional Finite Element Analysis, for the calculation of Stress Intensity Factors at cracks in welded components. The residual stress fields, which are used in SIF calculations, have been computed by the numerical simulation of the thermo-mechanical process. A numerical algorithm based on interpolation principles is developed, in order to introduce the three-dimensional field in the computational model of the cracked structure. The SIF calculation methodology is initially validated for the case of a welded plate by comparison of numerical results with existing analytical solutions. A cracked stiffened panel is analysed afterwards and the calculated fatigue crack propagation results are compared to experimentally measured data. Finally, the numerical procedure is applied to study the effect of more complicated residual stress fields on SIF values developing at cracks located in stiffened panels.  相似文献   

18.
A new method for crack identification of bridge beam structures under a moving load based on wavelet analysis is presented. Crack is modeled through rotational springs whose compliance is evaluated using linear elastic fracture mechanics. Dynamic behavior of the cracked beam subject to moving load is analyzed using mode superposition. The response obtained at a single measuring point is analyzed using continuous wavelet transform and the location of the cracks is estimated. The locations of the cracks are determined from the sudden changes in the spatial variation of the transform responses. To estimate the relative depth of the cracks, a damage factor is established which relates the size of the cracks to the coefficients of the wavelet transform. The proposed method is validated by both simulation and experiment. Locations of multiple damages can be located accurately, and the results are not sensitive to measurement noise, speed and magnitude of moving load, measuring location, etc.  相似文献   

19.
In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived using the energy release rate theory. A mode of crack opening displacements of a normal slice is established, and the normal slice relevant functions are introduced. The proposed method is both effective and accurate for the problem of three-dimensional cracks emanating from a surface cavity. A series of useful results of SIFs are obtained.  相似文献   

20.
This paper discusses a computationally efficient method for determining the behaviour of complex structures containing three-dimensional cracks. A simple method is presented for calculating the mode I stress intensities for semi-elliptical cracks emanating from the saddle point of two intersecting tubular members. This method, which gives results in good agreement with published values, uses the finite element technique, but does not require the crack to be modelled explicitly. The technique is then used, in conjunction with FASTRAN II, to study fatigue crack growth and the results are compared to experimental data. Good agreement is achieved between both the predicted and measured fatigue crack growth and the evolution of the crack aspect ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号