首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new mesogenic compounds 1a-b (n=8, 10, 12, 14, 16) derived from salicyladimines and their palladium 2a, 2b, vanadyl 2a, and copper complexes 3a, 3b were prepared and their mesomorphic properties investigated by optical microscopy, differential scanning calorimetry and powder X-ray diffractometry. Pd2+ and VO2+ ions formed mononuclear complexes, whereas, Cu2+ ion formed binuclear complexes due to the relative acidic strength of Schiff base. Single crystallographic analysis of non-mesogenic compound 2a (n=8) confirmed its coordination geometry at Pd2+ as square plane. It crystallizes in a triclinic space group P−1 with a Z=1. As expected, the Pd2+ was coordinated via a trans-N2O2 donor set of phenolic-O and imine-N atoms, leaving two hydroxyl groups intact and uncoordinated. The two alkoxy chains, pointing to the opposite direction were parallel, and the molecule was considered as twisted Z-shaped. Both hydroxyl-OH groups attached on C17 and C18-Schiff imines participate in the H-bonds in the lattice. Interestingly, a pseudo polymeric structure was observed, in which H-bonded dimer was continuously extended by another H-bonded dimer in the lattice. Compounds 1 exhibited smectic A phases, and Pd and VO complexes and Cu complexes 3b exhibited smectic A or/and smectic X phases, however, Cu complexes 3a formed crystal phases. Intermolecular H-bonds might be attributed to the difference observed on the mesomorphic properties in these compounds. Copper complexes 2b were not active on ESR spectroscopy.  相似文献   

2.
Three series of copper(II) complexes 1a-1c derived from unsymmetric pyrazoles 2a-2c were prepared and their mesomorphic properties investigated. The mesomorphic behavior of compounds was studied by differential scanning calorimetry, polarizing optical microscopy, and powder X-ray diffractometry. The crystal and molecular structures of mesogenic copper complex (2a; n=10) of 3-[4-decyloxyphenyl]-1H-pyrazole were determined by means of X-ray structural analysis. It crystallizes in the triclinic space group P-1, with a=4.0890(1) Å, b=18.0167(2) Å, c=25.5015(5) Å, and Z=2. The geometry at copper center was not perfectly square planar. A weak intermolecular H-bond (d=2.36 Å) between Cl1 and H2 atoms and π-π interaction (ca. 3.45-3.55 Å) was also observed. All their precursors 2a-2c were not mesogenic. In contrast, copper complexes 1a formed nematic or smectic C phases and complexes 1b-1c formed crystalline phases. Powder X-ray diffraction experiments confirmed the presence of SmC phase.  相似文献   

3.
The synthesis, mesomorphic behavior, and optical properties of two new series of metal complexes 1a,b-M (M=Pd, Cu, Zn) derived from benzoxazoles 2a,b are reported. The crystal and molecular structures of mesogenic 5-decyloxy-2-(6-decyloxybenzooxazol-2-yl)phenol and nonmesogenic bis[5-octyloxy-2-(6-octyloxybenzooxazol-2-yl) phenol]Pd(II) were determined by means of X-ray structural analysis. Two benzoxazoles 2a exhibited monotropic SmA phases, and all benzoxazoles 2b were nonmesogenic. On the other hand, metal complexes 1a-M exhibited distinctly different mesomorphism from complexes 1b-M. Complexes 1a-Pd formed SmC phases; complexes 1a-Cu and 1a-Zn formed crystal phases. In contrast, complexes 1b-Zn exhibited columnar phases, and complexes 1b-Cu and 1b-Pd were nonmesogenic. The difference of the mesomorphism in 1a-M and 1b-M was probably attributed to the geometry and/or the overall molecular shape created by 2a and 2b. The electronic configuration of metal ion might play an important role in forming the mesophases. The fluorescent properties of these compounds were also examined.  相似文献   

4.
The synthesis, mesomorphic behavior, and optical properties of a new series of transition metal complexes 1a and 1b derived from benzoxazoles 2 are reported. The crystal and molecular structure of copper complex of 6-dodecyloxynaphthalene-2-carboxylic acid 4-(6-hexyloxybenzooxazol-2-yl)-3-hydroxyphenyl ester 1a (n=6; m=12) was determined by means of X-ray structural analysis, and it crystallizes in the triclinic space group P-1. The geometry at copper center is perfectly square-planar, and the overall molecular shape is considered as rod-shape. All precursors 2 with shorter chains (n=0, 1, 4) exhibited nematic, and all others with longer chains (n=6, 7, 8, 10, 12) formed N/SmC phases. In contrast, all copper(II) complexes 1a and palladium complexes 1b formed N phase. On the other hand, the temperature range of mesophase in compound 1a was wider than those in compound 1b. The difference of the mesomorphic properties in compounds 1a and 1b was attributed to the geometry or/and the size of the metal center. The fluorescent properties of these compounds were also examined.  相似文献   

5.
The preparation, characterization, and mesomorphic properties of two series of tridentate N-salicylidene-2-hydroxyanilines and their metal complexes were described. The crystal and molecular structure of bis[2-hydroxy-4-propyloxy-N-(2-hydroxy-3,4-dipropyloxybenzylidene) aniline]copper(II) were determined by means of X-ray analysis. It crystallizes in the monoclinic space group P2(1)/n and a Z=4. The geometry at Cu2+ ions is square pyramidal with a THF solvent molecule coordinated. The core structure was nearly flat, and the intramolecular Cu–Cu atoms were separated by ca. 3.0163(6) Å. All compounds 2a formed smectic C phases, and copper complexes 1aCu were not mesogenic. In contrast, compound 2e and complexes 1bCu, 1dCu, 1eCu, and 1ePd exhibited columnar phases. The lack of mesomorphism in 1eZn was attributed to a preferred tetrahedral over square planar geometry. A Ncell equal to 2.44–2.92, calculated from powder XRD data within a 9.0 Å thick indicated that an induced structure correlated by two catenar-shaped molecules was formed in Colh phases.  相似文献   

6.
Two series of new Schiff bases 2 (n=8, 12, 16) derived from (3-hydroxypropyl imino)propan-1, 2-diol with a hydroxyl group at C19/C20-position and their palladium complexes 1 were prepared and their mesomorphic properties investigated by DSC, POM, and XRD. The presence of both hydroxyl groups was found to be crucial in forming the liquid crystalline behavior. All compounds 2a exhibited smectic A or and C phases, in contrast, all compounds 2b formed hexagonal columnar phases. The formation of mesophases in both compounds 1-2 was probably induced by inter-molecular H-bonds. Single crystallographic data in mesogenic compound 2a (n=8) indicated that a dimeric structure with a better linear or rod-like molecular shape was formed by an inter-molecular H-bond (O4-O1′, ∼1.854 Å). Another inter-molecular H-bond (∼1.903 Å) between two dimeric structures was also observed. It crystallizes in a monoclinic space group P2(1)/c. On the other hand, all palladium complexes 1 formed enantiotropic smectic A phases. Single crystallographic data in mesogenic compound 1a (n=8) indicated that the geometry at Pd2+ center was coordinated as slightly twisted square planar. It crystallizes in a monoclinic space group P2(1)/n. An inter-molecular H-bond (∼1.799 Å) between neighboring molecules were observed, which might have facilitated the formation of mesophases. Variable-temperature powder XRD experiments confirmed their mesophase structures.  相似文献   

7.
First examples of tungsten aminocarbene complexes [(OC5)W{C(SiR1nR23-n)NH2}] 2a-d (R1 = Ph, R2 = Me) were synthesized via ammonolysis of the corresponding methoxycarbene complexes 1a-d. They were characterized by NMR spectroscopy, MS, IR, UV/Vis and elemental analysis, and in the case of the C-triphenylsilyl derivative 2a by single-crystal X-ray structure analysis. The reaction of P-chloro alkylidenephosphane 3 with complexes 2a-d, meant to give 2H-azaphosphirene complexes, was monitored by 31P NMR spectroscopy to reveal the formation of the products 4-7, which were presumably formed via decomposition of the transient complexes 10a-d.  相似文献   

8.
Four new series of unsymmetric isoxazoles and 1,3,4-oxadiazoles were prepared, characterized and their mesomorphic properties investigated. Isoxazoles were obtained by condensation–cyclization of β-diketones with hydroxylamine hydrochloride in refluxing THF, while 1,3,4-oxadiazoles were obtained from hydrazine-carboxylate in refluxing POCl3. Two single crystallographic structures were determined by X-ray crystallographic analysis. A correlated dimeric structure was formed by H-bonds in isoxazoles 1a (n=6), leading to a more elongated structure required for the formation of mesophases. All compounds 1ac formed N, SmA or/and SmC phases. In contrast, compounds 1d exhibited columnar phases, and an Ncell=14.6 obtained from powder XRD data indicated that a correlated structure formed by four molecules was probably induced in Colh phases. The better mesomorphic behavior formed in 1a than 1b might be attributed to stronger intermolecular interactions and higher polarization induced in isoxazoles 1a.  相似文献   

9.
Two new series of unsymmetric 1,3,4-oxa(thia)diazoles 1a,b containing both quinoxaline and naphthalene moieties were prepared and their mesomorphic properties were investigated. The mesomorphic behavior of compounds 1a,b and 2 was studied by DSC analysis and polarized optical microscopy. All compounds 1a and 2 exhibited hexagonal columnar phases (Colh), which were also confirmed by powder XRD diffractometer. Ncell and Rar values equal to 5.23 and 22.73 Å2 within a slice of 9.0 Å thick were also obtained for 1a (n=16), indicating that a more disc-like structure constructed by two molecules lying side-by-side was correlated in Colh phases. In contrast, all compounds 1b were not mesogenic, and the lack of mesomorphic properties in 1b might be due to their unfavorable conformations. The PL spectra of all compounds 1a,b showed one intense peak at λmax=509–512 nm, and these photoluminescent emissions originated from quinoxaline moiety.  相似文献   

10.
The dimeric rhodium precursor [Rh(CO)2Cl]2 reacts with quinoline (a) and its three isomeric carboxaldehyde ligands [quinoline-2-carboxaldehyde (b), quinoline-3-carboxaldehyde (c), and quinoline-4-carboxaldehyde (d)] in 1:2 mole ratio to afford complexes of the type cis-[Rh(CO)2Cl(L)] (1a-1d), where L = a-d. The complexes 1a-1d have been characterised by elemental analyses, mass spectrometry, IR and NMR (1H, 13C) spectroscopy together with a single crystal X-ray structure determination of 1c. The X-ray crystal structure of 1c reveals square planar geometry with a weak intermolecular pseudo dimeric structure (Rh?Rh = 3.573 Å). 1a-1d undergo oxidative addition (OA) with different electrophiles such as CH3I, C2H5I and I2 to give Rh(III) complexes of the type [Rh(CO)(COR)Cl(L)I] {R = -CH3 (2a-2d), R = -C2H5 (3a-3d)} and [Rh(CO)Cl(L)I2] (4a-4d) respectively. 1b exhibits facile reactivity with different electrophiles at room temperature (25 °C), while 1a, 1c and 1d show very slow reactivity under similar condition, however, significant reactivity was observed at a temperature ∼40 °C. The complexes 1a-1d show higher catalytic activity for carbonylation of methanol to acetic acid and methyl acetate [Turn Over Frequency (TOF) = 1551-1735 h−1] compared to that of the well known Monsanto’s species [Rh(CO)2I2] (TOF = 1000 h−1) under the reaction conditions: temperature 130 ± 2 °C, pressure 33 ± 2 bar, 450 rpm and time 1 h. The organometallic residue of 1a-1d was also isolated after the catalytic reaction and found to be active for further run without significant loss of activity.  相似文献   

11.
A new series of non-discotic heterocyclic compounds 1a-e derived from quinoxaline was prepared and their mesomorphic properties investigated. The crystal and molecular structures of nonmesogenic 2,3-bis(3,4-didodecyloxyphenyl)quinoxaline-6-carboxylic acid 4-[(4-butoxy2-hydroxyphenylimino)methyl]phenyl ester 2a (n=4, m=12) were determined by means of X-ray structural analysis. It crystallizes in a monoclinic space group P2(1)/c, with a=21.9193(13) Å, b=8.3693(4) Å, c=30.896(2) Å, and Z=4. The molecule was considered as an elongated or tapered triangle. Both inter- and intra-molecular H-bonds were observed in the crystal lattice, which was attributed to the formation of columnar mesophase in compounds 2. The mesomorphic behavior of compounds 1-2 was studied by thermal analysis and polarized optical microscopy. All compounds 1-2 exhibited hexagonal columnar phases (Colh), which were also confirmed by powder XRD diffractometer. A Ncell and Rar value equal to 4.74 and 4.34 within a slice of 9.0 Å thick were obtained for 1b and 2b, indicating that a more disc-like correlated structure by two molecules lying side-by-side was formed in Colh phases. The fluorescent properties of the compounds 1-4 in CH3Cl were also examined.  相似文献   

12.
A series of aluminum and zinc complexes supported by functionalized phenolate ligands were synthesized and characterized. Reaction of 2-(3,5-R2C3N2)C6H4NH2 (R = Me, Ph) with salicylaldehyde or 3,5-di-tert-butylsalicylaldehyde afforded 2-((2-(1H-pyrazol-1-yl)phenylimino)methyl)phenol derivatives 2a-2d. Treatment of 2a-2d with an equiv. of AlR23 (R2 = Me, Et) gave corresponding aluminum aryloxides 3a-3e, while reaction with an equiv. of ZnEt2 afforded zinc aryloxides 4a-4d. Treatment of 2c with 0.5 equiv. of ZnEt2 formed diphenolato zinc complex 5. All new compounds were characterized by 1H and 13C NMR spectroscopy and elemental analyses. The structures of complexes 3a, 4a and 5 were further characterized by single crystal X-ray diffraction techniques. The catalytic activity of complexes 3-5 toward the ring-opening polymerization of ε-caprolactone was studied. The zinc complexes (4a-4d) exhibited higher catalytic activity than the aluminum complexes (3a-3e). The diphenolato zinc complex 5 showed lower catalytic activity than the ethylzinc complexes 4a-4d. The aluminum complex (3b) is inactive to initiate the ROP of rac-lactide, while the zinc complex (4d) is active initiator for the ROP of rac-lactide, giving atactic polylactide.  相似文献   

13.
[MBr(CO)3{κ2(N,O)-pyca}] [M = Mn(1a), Re(1b), pyca = pyridine-2-carboxaldehyde] and [MoCl(η3-C3H4Me-2)(CO)2{κ2(N,O)-pyca}] (1c) react with aminoacid β-alanine to give the corresponding iminopyridine complexes 2a-2c. The same method affords the iminopyridine derivatives from γ-aminobutyric acid (GABA) (3a-3c) and 3-aminobenzoic acid (4a-4c). For complexes 2a-2c, 3a, 3c and 4a, the solid state structures have been determined by X-ray crystallography, revealing interesting differences in their hydrogen-bonding patterns in solid state.  相似文献   

14.
A new class of azobenzene-based chelators, trans-3a and trans-3b (3a and 3b), were designed and synthesized in two steps. Both 3a and 3b were readily dissolved in a buffer solution at physiological pH. The values of the dissociation constant of 3a and 3b for Mg2+ and Ca2+ were determined by the Hills plot; KdMg=1.12 mM and KdCa=660 μM for 3a and KdMg=158 μM and KdCa=200 μM for 3b, respectively. On irradiation at 489 nm light, 3a isomerized to give cis-form, which underwent cis-to-trans thermal isomerization in darkness at room temperature. The change in the absorption spectrum of the irradiated solution of 3a in the presence of Mg2+, showing the cis-to-trans thermal isomerization, indicates that the affinity of cis-3a for Mg2+ is lower than that of 3a.  相似文献   

15.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

16.
The synthesis of a series of anionic half-sandwich ruthenium-arene complexes [E][RuCl26-p-cymene){PR2(p-Ph3BC6H4)}] (E = Bu4N+: R = Ph, 1a, iPr, 1b or Cy, 1c; E = bis(triphenylphosphine)iminium or PNP+: R = Ph, 1a′, iPr, 1b′ or Cy, 1c′) are reported. X-ray crystallographic studies of 1a′ and 1b′ confirmed the three-legged piano-stool coordination geometry. In solution, complexes 1a-c and 1a-c′ are proposed to form monomer-dimer equilibria as a result of chloride ligand dissociation. Complexes 1a-c and 1a-c′ also form the formally neutral zwitterionic complexes [RuCl(L)(η6-p-cymene){PR2(p-Ph3BC6H4)}] (L = pyridine: R = Ph, 2a, iPr, 2b or Cy, 2c; L = MeCN: R = Ph, 3a, iPr, 3b or Cy, 3c) via chloride ligand abstraction using AgNO3 or MeOTf.  相似文献   

17.
The reaction of the electronically unsaturated platina-β-diketone [Pt2{(COMe)2H}2(μ-Cl)2] (1a) with N?N donors led to the formation of diacetyl(hydrido)platinum(IV) complexes [Pt(COMe)2Cl(H)(N?N)] (2). By the reaction of these complexes with NaOH in a two-phase system (H2O/CH2Cl2) diacetylplatinum(II) complexes [Pt(COMe)2(N?N)] (N?N = bpy, 4a; 4,4′-Me2-bpy, 4b; 4,4′-t-Bu2-bpy, 4c; 4,4′-Ph2-bpy, 4d; 4,4′-t-Bu2-6-n-Bu-bpy, 4e; bpym, 4f; bpyr, 4g; phen, 4h; 4-Me-phen, 4i; 5-Me-phen, 4j) were obtained. All complexes were characterized by microanalysis, IR and 1H and 13C NMR spectroscopy. Additionally, complexes 4a, 4c, 4d and 4e were characterized by single-crystal X-ray diffraction analysis. The observed variety of packing patterns resulting from π-π stacking and hydrogen bonding is discussed.  相似文献   

18.
A series of benzyloxybenzaldehyde derivatives (1-4) were synthesized by the reactions of 4-(bromomethyl)benzonitrile with 4-hydroxy-3-methoxybenzaldehyde (vanillin), 2-hydroxy-3-methoxybenzaldehyde (o-vanillin), 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde. Condensation reactions among the new benzyloxybenzaldehyde derivatives (1-4) with 4′-aminobenzo-15-crown-5 yielded the new Schiff base compounds (5-8). Sodium complexes (5a-8a) and potassium complexes (5b-8b) were prepared with NaClO4 and KI, respectively. All of these synthesized compounds were characterized on the basis of FT-IR, 1H and 13C NMR, mass spectrometry and elemental analyses data. The solid state structures of compounds 8 and 5a were determined by X-ray crystallography. The extraction abilities of compounds 5-8 were also evaluated in CH2Cl2 by using several main group and transition metal picrates, such as Na+, K+, Pb2+, Cr3+, Ni2+, Cu2+ and Zn2+.  相似文献   

19.
Ramendra Pratap  Vishnu Ji Ram 《Tetrahedron》2007,63(41):10309-10319
An efficient and versatile synthesis of various congested pyridines 3a-h, 6a,b, 8a-n, 10a-g, and 16a,b, and (pyrimidin-4-yl)acetonitriles 13a-g has been delineated by base catalyzed ring transformation of suitably functionalized 2H-pyran-2-ones 1a-h, 5, 7, and 15 by formamidine acetate 2a, acetamidine hydrochloride 2b, S-methylisothiourea 9a, pyrazol-1-yl-carboxamidine 9b, and arylamidine hydrochloride 12 separately in the presence of powdered KOH in dry DMF.  相似文献   

20.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号