首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rotational dispersion coefficient of the fiber in the turbulent shear flow of fiber suspension was studied theoretically. The function of correlation moment between the different fluctuating velocity gradients of the flow was built firstly. Then the expres- sion, dependent on the characteristic length, time, velocity and a dimensionless parameter related to the effect of wall, of rotational dispersion coefficient is derived. The derived expression of rotational dispersion coefficient can be employed to the inhomogeneous and non-isotropic turbulent flows. Furthermore it can be expanded to three-dimensional turbulent flows and serves the theoretical basis for solving the turbulent flow of fiber suspension.  相似文献   

2.
This paper describes a complete framework to predict the behaviour of interacting non-spherical particles with large Stokes numbers in a turbulent flow. A summary of the rigid body dynamics of particles and particle collisions is presented in the framework of Quaternions. A particle-rough wall interaction model to describe the collisions between non-spherical particles and a rough wall is put forward as well. The framework is coupled with a DNS-LES approach to simulate the behaviour of horizontal turbulent channel flow with 5 differently shaped particles: a sphere, two types of ellipsoids, a disc, and a fibre. The drag and lift forces and the torque on the particles are computed from correlations which are derived using true DNS.The simulation results show that non-spherical particles tend to locally maximise the drag force, by aligning their longest axis perpendicular to the local flow direction. This phenomenon is further explained by performing resolved direct numerical simulations of an ellipsoid in a flow. These simulations show that the high pressure region on the acute sides of a non-spherical particle result in a torque if an axis of the non-spherical particle is not aligned with the flow. This torque is only zero if the axis of the particle is perpendicular to the local direction of the flow. Moreover, the particle is most stable when the longest axis is aligned perpendicular to the flow.The alignment of the longest axis of a non-spherical particle perpendicular to the local flow leads to non-spherical particles having a larger average velocity compared to spherical particles with the same equivalent diameter. It is also shown that disc-shaped particles flow in a more steady trajectory compared to elongated particles, such as elongated ellipsoids and fibres. This is related to the magnitude of the pressure gradient on the acute side of the non-spherical particles. Finally, it is shown that the effect of wall roughness affects non-spherical particles differently than spherical particles. Particularly, a collision of a non-spherical particle with a rough wall induces a significant amount of rotational energy, whereas a corresponding collision with a spherical particle results in mostly a change in translational motion.  相似文献   

3.
A two-fluid model in the Eulerian–Eulerian framework has been implemented for the prediction of gas volume fraction, mean phasic velocities, and the liquid phase turbulence properties for gas–liquid upward flow in a vertical pipe. The governing two-fluid transport equations are discretized using the finite volume method and a low Reynolds number kɛ model is used to predict the turbulence field for the continuous liquid phase. In the present analysis, a fully developed one-dimensional flow is considered where the gas volume fraction profile is predicted using the radial force balance for the bubble phase. The current study investigates: (1) the turbulence modulation terms which represent the effect of bubbles on the liquid phase turbulence in the kε transport equations; (2) the role of the bubble induced turbulent viscosity compared to turbulence generated by shear; and (3) the effect of bubble size on the radial forces which results in either a center-peak or a wall-peak in the gas volume fraction profiles. The results obtained from the current simulation are generally in good agreement with the experimental data, and somewhat improved over the predictions of some previous numerical studies.  相似文献   

4.
Condensation in minichannels is widely used in air-cooled condensers for the automotive and air-conditioning industry, in heat pipes and other applications for system thermal control. The knowledge of pressure drops in such small channels is important in order to optimize heat transfer surfaces. This paper presents a model for calculation of the frictional pressure gradient during condensation or adiabatic liquid–gas flow inside minichannels with different surface roughness. In order to account for the effects of surface roughness, new experimental frictional pressure gradient data associated to single-phase flow and adiabatic two-phase flow of R134a inside a single horizontal mini tube with rough wall has been used in the modelling. It is a Friedel (1979) [Friedel, L., 1979. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. In: Proceedings of the European Two-Phase Flow Group Meeting, Ispra, Paper E2] based model and it takes into account mass velocity, vapor quality, fluid properties, reduced pressure, tube diameter, entrainment ratio and surface roughness. With respect to the flow pattern prediction capability, it has been built for shear dominated flow regimes inside pipes, thus, annular, annular-mist and mist flow are here predicted. However, the suggested procedure is extended to the intermittent flow in minichannels and it is also applied with success to horizontal macro tubes.  相似文献   

5.
高阶矩模型是湍流模式理论研究中的难点和前沿.自周培源先生首次建立一般湍流的雷诺应力输运方程起,为了更精确的预测复杂流动,人们从未间断过对高阶矩模型的研究.尤其进入新世纪以来,随着计算机硬件水平的飞跃和高精度数值算法的突破,湍流模拟方法正由RANS向LES转变.而无论对于RANS框架、LES框架还是两者混合,高阶矩模式都...  相似文献   

6.
In this paper, direct numerical simulation is performed to investigate a pulsatile flow in a constricted channel to gain physical insights into laminar–turbulent–laminar flow transitions. An in-house computer code is used to conduct numerical simulations based on available high-performance shared memory parallel computing facilities. The Womersley number tested is fixed to 10.5 and the Reynolds number varies from 500 to 2000. The influences of the degree of stenosis and pulsatile conditions on flow transitions and structures are investigated. In the region upstream of the stenosis, the flow pattern is primarily laminar. Immediately after the stenosis, the flow recirculates under an adverse streamwise pressure gradient, and the flow pattern transitions from laminar to turbulent. In the region far downstream of the stenosis, the flow becomes re-laminarised. The physical characteristics of the flow field have been thoroughly analysed in terms of the mean streamwise velocity, turbulence kinetic energy, viscous wall shear stresses, wall pressure and turbulence kinetic energy spectra.  相似文献   

7.
The present work examines the predictive capability of a two-fluid CFD model that is based on the kinetic theory of granular flow in simulating dilute-phase turbulent liquid–particle pipe flows in which the interstitial fluid effect on the particle fluctuating motion is significant. The impacts of employing different drag correlations and turbulence closure models to describe the fluid–particle interactions (i.e. drag force and long-range interaction) are examined at both the mean and fluctuating velocity l...  相似文献   

8.
This paper examines the suitability of various drag models for predicting the hydrodynamics of the turbulent fluidization of FCC particles on the Fluent V6.2 platform.The drag models included those of Syamlal–O’Brien,Gidaspow,modified Syamlal–O’Brien,and McKeen.Comparison between experimental data and simulated results showed that the Syamlal–O’Brien,Gidaspow,and modified Syamlal–O’Brien drag models highly overestimated gas–solid momentum exchange and could not predict the formation of dense phase in the fl...  相似文献   

9.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s.  相似文献   

10.
利用张量的不变量理论,推导得出传统雷诺应力模型中压力应变关联项模型应用于旋转湍流模拟中的一些基本问题,即在纯旋转条件下,传统模型所描述的初始各向异性的湍流中雷诺应力张量演化规律是一个无衰减振荡过程,而快速畸变理论推导结果显示,其演化应是一个阻尼振荡衰减的过程。以衰减雷诺应力为目的,构造出包含旋转率张量高阶量的关联项。然后,结合变形率张量的高阶项,将修正模型扩展至椭圆形流线类型流动。最后,将修正模型应用于轴向旋转圆管内湍流流场的模拟,并将结果与实测结果进行了对比。  相似文献   

11.
超声速流动中非线性EASM湍流模式应用研究   总被引:1,自引:0,他引:1  
针对超声速复杂流动区域精确模拟的需要,发展了基于k-ω可压缩修正形式的非线性显式代数雷诺应力模式(EASM),提高了该模式对超声速复杂流动的数值模拟精度。通过对二维超声速凹槽和三维双椭球的数值计算表明,与SA和SST常规线性涡黏性湍流模式比较,非线性的EASM模式对大分离以及剪切层流动结构的刻画能力更精细,对剪切层再附区的压力及摩擦系数分布模拟更加精确;EASM模式能够准确地模拟二次激波引起的压强和热流分布情况。  相似文献   

12.
A volume-filtered Euler–Lagrange large eddy simulation methodology is used to predict the physics of turbulent liquid–solid slurry flow through a horizontal periodic pipe. A dynamic Smagorinsky model based on Lagrangian averaging is employed to account for the sub-filter scale effects in the liquid phase. A fully conservative immersed boundary method is used to account for the pipe geometry on a uniform cartesian grid. The liquid and solid phases are coupled through volume fraction and momentum exchange terms. Particle–particle and particle–wall collisions are modeled using a soft-sphere approach. Three simulations are performed by varying the superficial liquid velocity to be consistent with the experimental data by Dahl et al. (2003). Depending on the liquid flow rate, a particle bed can form and develop different patterns, which are discussed in light of regime diagrams proposed in the literature. The fluctuation in the height of the liquid-bed interface is characterized to understand the space and time evolution of these patterns. Statistics of engineering interest such as mean velocity, mean concentration, and mean streamwise pressure gradient driving the flow are extracted from the numerical simulations and presented. Sand hold-up calculated from the simulation results suggest that this computational strategy is capable of predicting critical deposition velocity.  相似文献   

13.
In this paper, the fluid forces and the dynamics of a flexible clamped–clamped cylinder in turbulent axial flow are computed numerically. In the presented numerical model, there is no need to tune parameters for each specific case or to obtain coefficients from experiments. The results are compared with the dynamics measured in experiments available in the literature. The specific case studied here consists of a silicone cylinder mounted in axial water flow. Computationally it is found that the cylinder loses stability first by buckling. The threshold for buckling is in quantitative agreement with experimental results and weakly nonlinear theory. At higher flow speed a fluttering motion is predicted, in agreement with experimental results. It is also shown that even a small misalignment between the flow and the structure can have a significant impact on the dynamical behavior. To provide insight in the results of these fluid–structure interaction simulations, forces are computed on rigid inclined and curved cylinders, showing the existence of two different flow regimes. Furthermore it is shown that the inlet turbulence state has a non-negligible effect on these forces and thus on the dynamics of the cylinder.  相似文献   

14.
This study deals with the numerical predictions through Large-Eddy Simulation (LES) of the separated–reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their relation to the unsteady pressure field. A compressible approach that inherently includes acoustic propagation is here followed to describe the relationship between pressure fluctuations and vortex dynamics around the separation bubble. The objective of the present work is then to contribute to a better understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The filtered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–Wendroff approach to recover a high accuracy in both time and space. For validations, the present numerical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields. Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations are in very good agreement with the experimental values generally admitted. These characteristic modes are also visible on unsteady pressure signatures even far away from the separation. Spectral, POD and EPOD (extended POD) analyses are then applied to these numerical data to enhance the salient features of the pressure and velocity fields, especially the unsteady wall pressure in connection with either the vortex shedding or the low frequency shear-layer flapping. A contribution to the understanding of the coupling between wall pressure fluctuations and eddy vortices is finally proposed.  相似文献   

15.
The flow past a cylinder in a channel with the aspect ratio of 2:1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively.The project supported by the National Natural Science Foundation of China (50335010 and 20274041) and the MOLDFLOW Comp. Australia.  相似文献   

16.
Slug flow is commonly observed in gas production offshore fields. At high operation pressure only short hydrodynamic slugs are observed. However, as the offshore fields become older, the operation pressure becomes lower and long slugs may form. At near atmospheric pressures the long slugs may reach a size of 500 pipe diameters or more. Such slugs can cause serious operational failures due to the strong fluctuating pressure. Identifying the operation pressure conditions at which the long slugs appear, may reduce or prevent these negative effects.  相似文献   

17.
利用重正化群方法推导湍流二阶矩封闭模型   总被引:2,自引:0,他引:2  
刘正锋  王晓宏 《力学学报》2007,39(2):195-201
Rubinstein和Barton在他们的原始工作中,利用Yakhot-Orszag湍流重正化群方法对雷诺 应力输运方程中的速度-压力梯度项和各向同性回归过程进行了模拟. 文中分析了 其在理论推导过程中存在的数学物理上不自洽的问题及计算错误,并且利用重正化 群方法重新系统地对雷诺应力输运方程进行了模拟,计算得到的湍流常数理论值和 经验值相接近.  相似文献   

18.
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic–viscoplastic constitutive relation with various hardening–softening–hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip.On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening(or softening–hardening) has a particularly strong effect on the near crack tip stress and deformation fields.  相似文献   

19.
Turbulent flow and convective heat transfer of a nanofluid made of Al2O3 (1–4 vol.%) and water through a square duct is numerically studied. Single-phase model, volumetric concentration, temperature-dependent physical properties, uniform wall heat flux boundary condition and Renormalization Group Theory k-ε turbulent model are used in the computational analysis. A comparison of the results with the previous experimental and numerical data revealed 8.3 and 10.2 % mean deviations, respectively. Numerical results illustrated that Nu number is directly proportional with Re number and volumetric concentration. For a given Re number, increasing the volumetric concentration of nanoparticles does not have significant effect on the dimensionless velocity contours. At a constant dimensionless temperature, increasing the particle volume concentration increases the size of the temperature profile. Maximum value of dimensionless temperature increases with increasing x/Dh value for a given Re number and volumetric concentration.  相似文献   

20.
To promote a better understanding of liquid–liquid two-phase flow behavior, particularly under high pressure, flow patterns of n-hexadecane–CO2 liquid–liquid two-phase upward flow in vertical stainless steel pipes were experimentally investigated. Observations were made in two 0.0015 m I.D. pipes of different lengths (0.068 m and 0.5 m) under high pressure varying from 10.3 to 29.6 MPa using a high pressure visualization system. The total flow rate was fixed at 2.0 × 10−6 m3/min, while the flow rate ratio (φ) varied from 0.05 to 19. Bubbly flow, plug flow, slug flow, annular flow, and near-one-phase flow regions were found in both pipes, while stratified flow was observed only in the 0.068 m pipe. Flow pattern maps were constructed in the flow rate ratio versus pressure graph, which demonstrates significant impacts of flow rate ratio, pipe length, and pressure on flow patterns. These impacts are discussed in detail. To the authors’ best knowledge, this work is the first attempt to observe complex liquid–liquid two-phase flow behavior with flow pattern transitions under high pressure, and contributes to a better understanding of liquid–liquid two-phase flow behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号