首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Consider \(G=SL_2(\mathbb {Z})/\{\pm I\}\) acting on the complex upper half plane H by \(h_M(z)=\frac{az\,+\,b}{cz\,+\,d}\) for \(M \in G\). Let \(D=\{z \in H: |z|\ge 1, |\mathfrak {R}(z)|\le 1/2\}\). We consider the set \({\mathcal {E}} \subset G\) with the nine elements M, different from the identity, such that \(\mathrm{tr\,}(MM^T)\le 3\). We equip the tiling of H defined by \(\mathbb {D}=\{h_M(D){:}\, M \in G\}\) with a graph structure where the neighbours are defined by \(h_M(D) \cap h_{M'}(D) \ne \emptyset \), equivalently \(M^{-1}M' \in {\mathcal {E}}\). The present paper studies several Markov chains related to the above structure. We show that the simple random walk on the above graph converges a.s. to a point X of the real line with the same distribution of \(S_2 W^{S_1}\), where \(S_1,S_2,W\) are independent with \(\Pr (S_i=\pm 1)=1/2\) and where W is valued in (0, 1) with distribution \(\Pr (W<w)=\mathbf ? (w)\). Here \(\mathbf ? \) is the Minkowski function. If \(K_1, K_2, \ldots \) are i.i.d with distribution \(\Pr (K_i=n)= 1/2^n\) for \(n=1,2,\ldots \), then \(W= \frac{1}{K_1+\frac{1}{K_2+\ldots }}\): this known result (Isola in Appl Math 5:1067–1090, 2014) is derived again here.  相似文献   

2.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

3.
Let \(\mathcal {A}\subset \left( {\begin{array}{c}[n]\\ r\end{array}}\right) \) be a compressed, intersecting family and let \(X\subset [n]\). Let \(\mathcal {A}(X)=\{A\in \mathcal {A}:A\cap X\ne \emptyset \}\) and \(\mathcal {S}_{n,r}=\left( {\begin{array}{c}[n]\\ r\end{array}}\right) (\{1\})\). Motivated by the Erd?s–Ko–Rado theorem, Borg asked for which \(X\subset [2,n]\) do we have \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\) for all compressed, intersecting families \(\mathcal {A}\)? We call X that satisfy this property EKR. Borg classified EKR sets X such that \(|X|\ge r\). Barber classified X, with \(|X|\le r\), such that X is EKR for sufficiently large n, and asked how large n must be. We prove n is sufficiently large when n grows quadratically in r. In the case where \(\mathcal {A}\) has a maximal element, we sharpen this bound to \(n>\varphi ^{2}r\) implies \(|\mathcal {A}(X)|\le |\mathcal {S}_{n,r}(X)|\). We conclude by giving a generating function that speeds up computation of \(|\mathcal {A}(X)|\) in comparison with the naïve methods.  相似文献   

4.
The Voronin universality theorem asserts that a wide class of analytic functions can be approximated by shifts \(\zeta (s+i\tau )\), \(\tau \in \mathbb {R}\), of the Riemann zeta-function. In the paper, we obtain a universality theorem on the approximation of analytic functions by discrete shifts \(\zeta (s+ix_kh)\), \(k\in \mathbb {N}\), \(h>0\), where \(\{x_k\}\subset \mathbb {R}\) is such that the sequence \(\{ax_k\}\) with every real \(a\ne 0\) is uniformly distributed modulo 1, \(1\le x_k\le k\) for all \(k\in \mathbb {N}\) and, for \(1\le k\), \(m\le N\), \(k\ne m\), the inequality \(|x_k-x_m| \ge y^{-1}_N\) holds with \(y_N> 0\) satisfying \(y_Nx_N\ll N\).  相似文献   

5.
The derangement graph is the Cayley graph on the symmetric group \(\mathcal {S}_{n}\) whose generating set \(D_{n}\) is the set of permutations on \([n]=\{1, \ldots , n\}\) without any 1-cycle. For any fixed positive integer \(k \le n\), the Cayley graph generated by the subset of \(D_{n}\) consisting of permutations without any i-cycles for all \(1 \le i \le k\) is a regular subgraph of the derangement graph. In this paper, we determine the smallest eigenvalue of these subgraphs and show that the set of all the largest independent sets in these subgraphs is equal to the set of all the largest independent sets in the derangement graph, provided n is sufficiently large in terms of k.  相似文献   

6.
Let \(\bar{p}(n)\) denote the number of overpartitions of \(n\). Recently, Fortin–Jacob–Mathieu and Hirschhorn–Sellers independently obtained 2-, 3- and 4-dissections of the generating function for \(\bar{p}(n)\) and derived a number of congruences for \(\bar{p}(n)\) modulo 4, 8 and 64 including \(\bar{p}(8n+7)\equiv 0 \pmod {64}\) for \(n\ge 0\). In this paper, we give a 16-dissection of the generating function for \(\bar{p}(n)\) modulo 16 and show that \(\bar{p}(16n+14)\equiv 0\pmod {16}\) for \(n\ge 0\). Moreover, using the \(2\)-adic expansion of the generating function for \(\bar{p}(n)\) according to Mahlburg, we obtain that \(\bar{p}(\ell ^2n+r\ell )\equiv 0\pmod {16}\), where \(n\ge 0\), \(\ell \equiv -1\pmod {8}\) is an odd prime and \(r\) is a positive integer with \(\ell \not \mid r\). In particular, for \(\ell =7\) and \(n\ge 0\), we get \(\bar{p}(49n+7)\equiv 0\pmod {16}\) and \(\bar{p}(49n+14)\equiv 0\pmod {16}\). We also find four congruence relations: \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n) \pmod {16}\) for \(n\ge 0\), \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {32}\) where \(n\) is not a square of an odd positive integer, \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {64}\) for \(n\not \equiv 1,2,5\pmod {8}\) and \(\bar{p}(4n)\equiv (-1)^n\bar{p}(n)\pmod {128}\) for \(n\equiv 0\pmod {4}\).  相似文献   

7.
Let \(F(X,Y)=\sum \nolimits _{i=0}^sa_iX^{r_i}Y^{r-r_i}\in {\mathbb {Z}}[X,Y]\) be a form of degree \(r=r_s\ge 3\), irreducible over \({\mathbb {Q}}\) and having at most \(s+1\) non-zero coefficients. Mueller and Schmidt showed that the number of solutions of the Thue inequality
$$\begin{aligned} |F(X,Y)|\le h \end{aligned}$$
is \(\ll s^2h^{2/r}(1+\log h^{1/r})\). They conjectured that \(s^2\) may be replaced by s. Let
$$\begin{aligned} \Psi = \max _{0\le i\le s} \max \left( \sum _{w=0}^{i-1} \frac{1}{r_i-r_w},\sum _{w= i+1}^{s}\frac{1}{r_w-r_i}\right) . \end{aligned}$$
Then we show that \(s^2\) may be replaced by \(\max (s\log ^3s, se^{\Psi })\). We also show that if \(|a_0|=|a_s|\) and \(|a_i|\le |a_0|\) for \(1\le i\le s-1\), then \(s^2\) may be replaced by \(s\log ^{3/2}s\). In particular, this is true if \(a_i\in \{-1,1\}\).
  相似文献   

8.
A generalization of Mallat’s classic theory of multiresolution analysis (MRA) on local fields of positive characteristic was considered by Jiang et al. (J Math Anal Appl 294:523–532, 2004). In this paper, we present a notion of nonuniform MRA on local field \(K\) of positive characteristic. The associated subspace \(V_0\) of \(L^2(K)\) has an orthonormal basis, a collection of translates of the scaling function \(\varphi \) of the form \(\{ \varphi (x-\lambda ) \}_{ \lambda \in \Lambda }\) where \(\Lambda = \{ 0,r/N \}+ \mathcal{Z}, \,N \ge 1\) is an integer and \(r\) is an odd integer such that \(r\) and \(N\) are relatively prime and \(\mathcal{Z}=\{u(n): n\in \mathbb {N}_{0}\}\). We obtain the necessary and sufficient condition for the existence of associated wavelets and present an algorithm for the construction of nonuniform MRA on local fields starting from a low-pass filter \(m_{0}\) with appropriate conditions.  相似文献   

9.
If F(z) is a polynomial of degree n having all zeros in \(|z|\le k,~k>0\) and f(z) is a polynomial of degree \(m\le n\) such that \(|f(z)|\le |F(z)|\) for \(|z|=k\), then it was formulated by Rather and Gulzar (Adv Inequal Appl 2:16–30, 2013) that for every \(|\delta |\le 1, |\beta |\le 1,~R>r\ge k\) and \(|z|\ge 1,\)
$$\begin{aligned} |B[fo\sigma ](z)+\psi B[fo\rho ](z)|\le |B[Fo\sigma ](z)+\psi B[Fo\rho ](z)|, \end{aligned}$$
where B is a \(B_{n}\) operator, \(\sigma (z){=}Rz, \rho (z){=}rz\) and \(\psi {:=}\psi (R,r,\delta ,\beta ,k) {=}\beta \bigg \{\bigg (\frac{R+k}{r+k}\bigg )^{n}{-}|\delta |\bigg \}{-}\delta \). The authors have assumed that \(B\in B_{n}\) is a linear operator which is not true in general. In this paper, besides discussing assumption of authors and their followers (see e.g, Rather et al. in Int J Math Arch 3(4):1533–1544, 2012), we present the correct proof of the above inequality. Moreover our result improves many prior results involving \(B_{n}\) operators and a number of polynomial inequalities can also be deduced by a uniform procedure.
  相似文献   

10.
11.
We study packing problems with matroid structures, which includes the strength of a graph of Cunningham and scheduling problems. If \(\mathcal {M}\) is a matroid over a set of elements S with independent set \(\mathcal {I}\), and \(m=|S|\), we suppose that we are given an oracle function that takes an independent set \(A\in \mathcal {I}\) and an element \(e\in S\) and determines if \(A\cup \{e\}\) is independent in time I(m). Also, given that the elements of A are represented in an ordered way \(A=\{A_1,\dots ,A_k\}\), we denote the time to check if \(A\cup \{e\}\notin \mathcal {I}\) and if so, to find the minimum \(i\in \{0,\dots ,k\}\) such that \(\{A_1,\dots ,A_i\}\cup \{e\}\notin \mathcal {I}\) by \(I^*(m)\). Then, we describe a new FPTAS that computes for any \(\varepsilon >0\) and for any matroid \(\mathcal {M}\) of rank r over a set S of m elements, in memory space O(m), the packing \(\varLambda ({\mathcal {M}})\) within \(1+\varepsilon \) in time \(O(mI^*(m)\log (m)\log (m/r)/\varepsilon ^2)\), and the covering \(\varUpsilon ({\mathcal {M}})\) in time \(O(r\varUpsilon ({\mathcal {M}})I(m)\log (m)\log (m/r)/\varepsilon ^2)\). This method outperforms in time complexity by a factor of \(\varOmega (m/r)\) the FPTAS of Plotkin, Shmoys, and Tardos, and a factor of \(\varOmega (m)\) the FPTAS of Garg and Konemann. On top of the value of the packing and the covering, our algorithm exhibits a combinatorial object that proves the approximation. The applications of this result include graph partitioning, minimum cuts, VLSI computing, job scheduling and others.  相似文献   

12.
Let \(\{X(t):t\in \mathbb R_+\}\) be a stationary Gaussian process with almost surely (a.s.) continuous sample paths, \(\mathbb E X(t) = 0, \mathbb E X^2(t) = 1\) and correlation function satisfying (i) \(r(t) = 1 - C|t|^{\alpha } + o(|t|^{\alpha })\) as \(t\rightarrow 0\) for some \(0\le \alpha \le 2\) and \(C>0\); (ii) \(\sup _{t\ge s}|r(t)|<1\) for each \(s>0\) and (iii) \(r(t) = O(t^{-\lambda })\) as \(t\rightarrow \infty \) for some \(\lambda >0\). For any \(n\ge 1\), consider n mutually independent copies of X and denote by \(\{X_{r:n}(t):t\ge 0\}\) the rth smallest order statistics process, \(1\le r\le n\). We provide a tractable criterion for assessing whether, for any positive, non-decreasing function \(f, \mathbb P(\mathscr {E}_f)=\mathbb P(X_{r:n}(t) > f(t)\, \text { i.o.})\) equals 0 or 1. Using this criterion we find, for a family of functions \(f_p(t)\) such that \(z_p(t)=\mathbb P(\sup _{s\in [0,1]}X_{r:n}(s)>f_p(t))=O((t\log ^{1-p} t)^{-1})\), that \(\mathbb P(\mathscr {E}_{f_p})= 1_{\{p\ge 0\}}\). Consequently, with \(\xi _p (t) = \sup \{s:0\le s\le t, X_{r:n}(s)\ge f_p(s)\}\), for \(p\ge 0\) we have \(\lim _{t\rightarrow \infty }\xi _p(t)=\infty \) and \(\limsup _{t\rightarrow \infty }(\xi _p(t)-t)=0\) a.s. Complementarily, we prove an Erdös–Révész type law of the iterated logarithm lower bound on \(\xi _p(t)\), namely, that \(\liminf _{t\rightarrow \infty }(\xi _p(t)-t)/h_p(t) = -1\) a.s. for \(p>1\) and \(\liminf _{t\rightarrow \infty }\log (\xi _p(t)/t)/(h_p(t)/t) = -1\) a.s. for \(p\in (0,1]\), where \(h_p(t)=(1/z_p(t))p\log \log t\).  相似文献   

13.
For L a complete lattice L and \(\mathfrak {X}=(X,(R_i)_I)\) a relational structure, we introduce the convolution algebra \(L^{\mathfrak {X}}\). This algebra consists of the lattice \(L^X\) equipped with an additional \(n_i\)-ary operation \(f_i\) for each \(n_i+1\)-ary relation \(R_i\) of \(\mathfrak {X}\). For \(\alpha _1,\ldots ,\alpha _{n_i}\in L^X\) and \(x\in X\) we set \(f_i(\alpha _1,\ldots ,\alpha _{n_i})(x)=\bigvee \{\alpha _1(x_1)\wedge \cdots \wedge \alpha _{n_i}(x_{n_i}):(x_1,\ldots ,x_{n_i},x)\in R_i\}\). For the 2-element lattice 2, \(2^\mathfrak {X}\) is the reduct of the familiar complex algebra \(\mathfrak {X}^+\) obtained by removing Boolean complementation from the signature. It is shown that this construction is bifunctorial and behaves well with respect to one-one and onto maps and with respect to products. When L is the reduct of a complete Heyting algebra, the operations of \(L^\mathfrak {X}\) are completely additive in each coordinate and \(L^\mathfrak {X}\) is in the variety generated by \(2^\mathfrak {X}\). Extensions to the construction are made to allow for completely multiplicative operations defined through meets instead of joins, as well as modifications to allow for convolutions of relational structures with partial orderings. Several examples are given.  相似文献   

14.
Let \(\varphi \) be an arbitrary linear-fractional self-map of the unit disk \({\mathbb {D}}\) and consider the composition operator \(C_{-1, \varphi }\) and the Toeplitz operator \(T_{-1,z}\) on the Hardy space \(H^2\) and the corresponding operators \(C_{\alpha , \varphi }\) and \(T_{\alpha , z}\) on the weighted Bergman spaces \(A^2_{\alpha }\) for \(\alpha >-1\). We prove that the unital C\(^*\)-algebra \(C^*(T_{\alpha , z}, C_{\alpha , \varphi })\) generated by \(T_{\alpha , z}\) and \(C_{\alpha , \varphi }\) is unitarily equivalent to \(C^*(T_{-1, z}, C_{-1, \varphi }),\) which extends a known result for automorphism-induced composition operators. For maps \(\varphi \) that are not automorphisms of \({\mathbb {D}}\), we show that \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })\) is unitarily equivalent to \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})\), where \({\mathcal {K}}_{\alpha }\) and \({\mathcal {K}}_{-1}\) denote the ideals of compact operators on \(A^2_{\alpha }\) and \(H^2\), respectively, and apply existing structure theorems for \(C^*(C_{-1, \varphi }, {\mathcal {K}}_{-1})/{\mathcal {K}}_{-1}\) to describe the structure of \(C^*(C_{\alpha , \varphi }, {\mathcal {K}}_{\alpha })/\mathcal {K_{\alpha }}\), up to isomorphism. We also establish a unitary equivalence between related weighted composition operators induced by maps \(\varphi \) that fix a point on the unit circle.  相似文献   

15.
A linear complementary-dual (LCD) code C is a linear code whose dual code \(C^{\perp }\) satisfies \(C \cap C^{\perp }=\{0\}\). In this work we characterize some classes of LCD q-ary \((\lambda , l)\)-quasi-twisted (QT) codes of length \(n=ml\) with \((m,q)=1\), \(\lambda \in F_{q} \setminus \{0\}\) and \(\lambda \ne \lambda ^{-1}\). We show that every \((\lambda ,l)\)-QT code C of length \(n=ml\) with \(dim(C)<m\) or \(dim(C^{\perp })<m\) is an LCD code. A sufficient condition for r-generator QT codes is provided under which they are LCD. We show that every maximal 1-generator \((\lambda ,l)\)-QT code of length \(n=ml\) with \(l>2\) is either an LCD code or a self-orthogonal code and a sufficient condition for this family of codes is given under which such a code C is LCD. Also it is shown that every maximal 1-generator \((\lambda ,2)\)-QT code is LCD. Several good and optimal LCD QT codes are presented.  相似文献   

16.
Let\(B_{2}^{n}\) denote the Euclidean ball in\({\mathbb R}^n\), and, given closed star-shaped body\(K \subset {\mathbb R}^{n}, M_{K}\) denote the average of the gauge of K on the Euclidean sphere. Let\(p \in (0,1)\) and let\(K \subset {\mathbb R}^{n}\) be a p-convex body. In [17] we proved that for every\(\lambda \in (0,1)\) there exists an orthogonal projection P of rank\((1 - \lambda)n\) such that
$\frac{f(\lambda)}{M_K} PB^{n}_{2} \subset PK,$
where\(f(\lambda)=c_p\lambda^{1+1/p}\) for some positive constant c p depending on p only. In this note we prove that\(f(\lambda)\) can be taken equal to\(C_p\lambda^{1/p-1/2}\). In terms of Kolmogorov numbers it means that for every\(k \leq n\)
$d_k (\hbox{Id}:\ell^{n}_{2} \to ({\mathbb R}^{n},\|\cdot\|_{K})) \leq C_p \frac{n^{1/p-1}}{k^{1/p-1/2}} \ell(\hbox{ID}: \ell^{n}_{2} \to ({\mathbb R}^{n}, \|\cdot\|_{K})),$
where\(\ell(\hbox{Id})={\bf E}\|\sum\limits^{n}_{i=1}g_i e_i\|_K\) for the independent standard Gaussian random variables\(\{g_i\}\) and the canonical basis\(\{e_i\}\) of\({\mathbb R}^n\). All results do not require the symmetry of K.
  相似文献   

17.
We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.
  相似文献   

18.
In this paper, a complete classification is achieved of all the regular covers of the complete bipartite graphs \(K_{n,n}\) with cyclic covering transformation group, whose fibre-preserving automorphism group acts 2-arc-transitively. All these covers consist of one threefold covers of \(K_{6,6}\), one twofold cover of \(K_{12, 12}\) and one infinite family X(rp) of p-fold covers of \(K_{p^r,p^r}\) with p a prime and r an integer such that \(p^r\ge 3\). This infinite family X(rp) can be derived by a very simple and nice voltage assignment f as follows: \(X(r, p)=K_{p^r, p^r}\times _f \mathbb {Z}_p\), where \(K_{p^r, p^r}\) is a complete bipartite graph with the bipartition \(V=\{ \alpha \bigm |\alpha \in V(r,p)\}\cup \{ \alpha '\bigm |\alpha \in V(r,p)\}\) for the r-dimensional vector space V(rp) over the field of order p and \(f_{\alpha ,\beta '}=\sum _{i=1}^ra_ib_i,\,\, \mathrm{for\,\,all}\,\,\alpha =(a_i)_r, \beta =(b_i)_r\in V(r,p)\).  相似文献   

19.
For \(n\ge 1\), the nth Ramanujan prime is defined as the least positive integer \(R_{n}\) such that for all \(x\ge R_{n}\), the interval \((\frac{x}{2}, x]\) has at least n primes. Let \(p_{i}\) be the ith prime and \(R_{n}=p_{s}\). Sondow, Laishram, and other scholars gave a series of upper bounds of s. In this paper we establish several results giving estimates of upper and lower bounds of Ramanujan primes. Using these estimates, we discuss a conjecture on Ramanujan primes of Sondow–Nicholson–Noe and prove that if \(n>10^{300}\), then \(\pi (R_{mn})\le m\pi (R_{n})\) for \(m\ge 1\).  相似文献   

20.
In this work, we study a version of the general question of how well a Haar-distributed orthogonal matrix can be approximated by a random Gaussian matrix. Here, we consider a Gaussian random matrix \(Y_n\) of order n and apply to it the Gram–Schmidt orthonormalization procedure by columns to obtain a Haar-distributed orthogonal matrix \(U_n\). If \(F_i^m\) denotes the vector formed by the first m-coordinates of the ith row of \(Y_n-\sqrt{n}U_n\) and \(\alpha \,=\,\frac{m}{n}\), our main result shows that the Euclidean norm of \(F_i^m\) converges exponentially fast to \(\sqrt{ \big (2-\frac{4}{3} \frac{(1-(1 -\alpha )^{3/2})}{\alpha }\big )m}\), up to negligible terms. To show the extent of this result, we use it to study the convergence of the supremum norm \(\epsilon _n(m)\,=\,\sup _{1\le i \le n, 1\le j \le m} |y_{i,j}- \sqrt{n}u_{i,j}|\) and we find a coupling that improves by a factor \(\sqrt{2}\) the recently proved best known upper bound on \(\epsilon _n(m)\). Our main result also has applications in Quantum Information Theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号