首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the existence of nontrivial solution to a quasi-linear problem where \( (-\Delta )_{p}^{s} u(x)=2\lim \nolimits _{\epsilon \rightarrow 0}\int _{\mathbb {R}^N \backslash B_{\varepsilon }(X)} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}{| x-y | ^{N+sp}}dy, \) \( x\in \mathbb {R}^N\) is a nonlocal and nonlinear operator and \( p\in (1,\infty )\), \( s \in (0,1) \), \( \lambda \in \mathbb {R} \), \( \Omega \subset \mathbb {R}^N (N\ge 2)\) is a bounded domain which smooth boundary \(\partial \Omega \). Using the variational methods based on the critical points theory, together with truncation and comparison techniques, we show that there exists a critical value \(\lambda _{*}>0\) of the parameter, such that if \(\lambda >\lambda _{*}\), the problem \((P)_{\lambda }\) has at least two positive solutions, if \(\lambda =\lambda _{*}\), the problem \((P)_{\lambda }\) has at least one positive solution and it has no positive solution if \(\lambda \in (0,\lambda _{*})\). Finally, we show that for all \(\lambda \ge \lambda _{*}\), the problem \((P)_{\lambda }\) has a smallest positive solution.
  相似文献   

2.
We study the discrete spectrum of the Robin Laplacian \(Q^{\Omega }_\alpha \) in \(L^2(\Omega )\), \(u\mapsto -\Delta u, \quad D_n u=\alpha u \text { on }\partial \Omega \), where \(D_n\) is the outer unit normal derivative and \(\Omega \subset {\mathbb {R}}^{3}\) is a conical domain with a regular cross-section \(\Theta \subset {\mathbb {S}}^2\), n is the outer unit normal, and \(\alpha >0\) is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of \(Q^{\Omega }_\alpha \) is \(-\alpha ^2\) and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of \(Q^\Omega _\alpha \) is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of \(Q^{\Omega }_\alpha \) in \((-\infty ,-\alpha ^2-\lambda )\), with \(\lambda >0\), behaves for \(\lambda \rightarrow 0\) as
$$\begin{aligned} \dfrac{\alpha ^2}{8\pi \lambda } \int _{\partial \Theta } \kappa _+(s)^2\mathrm {d}s +o\left( \frac{1}{\lambda }\right) , \end{aligned}$$
where \(\kappa _+\) is the positive part of the geodesic curvature of the cross-section boundary.
  相似文献   

3.
We consider the stationary Keller–Segel equation
$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta v+v=\lambda e^v, \quad v>0 \quad &{} \text {in }\Omega ,\\ \partial _\nu v=0 &{}\text {on } \partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \) is a ball. In the regime \(\lambda \rightarrow 0\), we study the radial bifurcations and we construct radial solutions by a gluing variational method. For any given \(n\in \mathbb {N}_0\), we build a solution having multiple layers at \(r_1,\ldots ,r_n\) by which we mean that the solutions concentrate on the spheres of radii \(r_i\) as \(\lambda \rightarrow 0\) (for all \(i=1,\ldots ,n\)). A remarkable fact is that, in opposition to previous known results, the layers of the solutions do not accumulate to the boundary of \(\Omega \) as \(\lambda \rightarrow 0\). Instead they satisfy an optimal partition problem in the limit.
  相似文献   

4.
Given \(\rho >0\), we study the elliptic problem
$$\begin{aligned} \text {find } (U,\lambda )\in H^1_0(\Omega )\times {\mathbb {R}}\text { such that } {\left\{ \begin{array}{ll} -\Delta U+\lambda U=|U|^{p-1}U\\ \int _{\Omega } U^2\, dx=\rho , \end{array}\right. } \end{aligned}$$
where \(\Omega \subset {\mathbb {R}}^N\) is a bounded domain and \(p>1\) is Sobolev-subcritical, searching for conditions (about \(\rho \), N and p) for the existence of solutions. By the Gagliardo-Nirenberg inequality it follows that, when p is \(L^2\)-subcritical, i.e. \(1<p<1+4/N\), the problem admits solutions for every \(\rho >0\). In the \(L^2\)-critical and supercritical case, i.e. when \(1+4/N \le p < 2^*-1\), we show that, for any \(k\in {\mathbb {N}}\), the problem admits solutions having Morse index bounded above by k only if \(\rho \) is sufficiently small. Next we provide existence results for certain ranges of \(\rho \), which can be estimated in terms of the Dirichlet eigenvalues of \(-\Delta \) in \(H^1_0(\Omega )\), extending to changing sign solutions and to general domains some results obtained in Noris et al. in Anal. PDE 7:1807–1838, 2014 for positive solutions in the ball.
  相似文献   

5.
We present a way to study a wide class of optimal design problems with a perimeter penalization. More precisely, we address existence and regularity properties of saddle points of energies of the form
$$\begin{aligned} (u,A) \quad \mapsto \quad \int _\Omega 2fu \,\mathrm {d}x \; - \int _{\Omega \cap A} \sigma _1\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; - \int _{\Omega {\setminus } A} \sigma _2\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; + \; \text {Per }(A;\overline{\Omega }), \end{aligned}$$
where \(\Omega \) is a bounded Lipschitz domain, \(A\subset \mathbb {R}^N\) is a Borel set, \(u:\Omega \subset \mathbb {R}^N \rightarrow \mathbb {R}^d\), \(\mathscr {A}\) is an operator of gradient form, and \(\sigma _1, \sigma _2\) are two not necessarily well-ordered symmetric tensors. The class of operators of gradient form includes scalar- and vector-valued gradients, symmetrized gradients, and higher order gradients. Therefore, our results may be applied to a wide range of problems in elasticity, conductivity or plasticity models. In this context and under mild assumptions on f, we show for a solution (wA), that the topological boundary of \(A \cap \Omega \) is locally a \(\mathrm {C}^1\)-hypersurface up to a closed set of zero \(\mathscr {H}^{N-1}\)-measure.
  相似文献   

6.
Let \(\Omega \) be a smooth bounded domain in \(\mathbb R^n\) with \(n\ge 2\), \(W^{1,n}_0(\Omega )\) be the usual Sobolev space on \(\Omega \) and define \(\lambda _1(\Omega ) = \inf \nolimits _{u\in W^{1,n}_0(\Omega )\setminus \{0\}}\frac{\int _\Omega |\nabla u|^n \mathrm{d}x}{\int _\Omega |u|^n \mathrm{d}x}\). Based on the blow-up analysis method, we shall establish the following improved Moser–Trudinger inequality of Tintarev type
$$\begin{aligned} \sup _{u\in W^{1,n}_0(\Omega ), \int _\Omega |\nabla u|^n \mathrm{{d}}x-\alpha \int _\Omega |u|^n \mathrm{{d}}x \le 1} \int _\Omega \exp (\alpha _{n} |u|^{\frac{n}{n-1}}) \mathrm{{d}}x < \infty , \end{aligned}$$
for any \(0 \le \alpha < \lambda _1(\Omega )\), where \(\alpha _{n} = n \omega _{n-1}^{\frac{1}{n-1}}\) with \(\omega _{n-1}\) being the surface area of the unit sphere in \(\mathbb R^n\). This inequality is stronger than the improved Moser–Trudinger inequality obtained by Adimurthi and Druet (Differ Equ 29:295–322, 2004) in dimension 2 and by Yang (J Funct Anal 239:100–126, 2006) in higher dimension and extends a result of Tintarev (J Funct Anal 266:55–66, 2014) in dimension 2 to higher dimension. We also prove that the supremum above is attained for any \(0< \alpha < \lambda _{1}(\Omega )\). (The case \(\alpha =0\) corresponding to the Moser–Trudinger inequality is well known.)
  相似文献   

7.
We consider the Laplacian with attractive Robin boundary conditions,
$$\begin{aligned} Q^\Omega _\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text { on } \partial \Omega , \end{aligned}$$
in a class of bounded smooth domains \(\Omega \in \mathbb {R}^\nu \); here \(n\) is the outward unit normal and \(\alpha >0\) is a constant. We show that for each \(j\in \mathbb {N}\) and \(\alpha \rightarrow +\infty \), the \(j\)th eigenvalue \(E_j(Q^\Omega _\alpha )\) has the asymptotics
$$\begin{aligned} E_j(Q^\Omega _\alpha )=-\alpha ^2 -(\nu -1)H_\mathrm {max}(\Omega )\,\alpha +{\mathcal O}(\alpha ^{2/3}), \end{aligned}$$
where \(H_\mathrm {max}(\Omega )\) is the maximum mean curvature at \(\partial \Omega \). The discussion of the reverse Faber-Krahn inequality gives rise to a new geometric problem concerning the minimization of \(H_\mathrm {max}\). In particular, we show that the ball is the strict minimizer of \(H_\mathrm {max}\) among the smooth star-shaped domains of a given volume, which leads to the following result: if \(B\) is a ball and \(\Omega \) is any other star-shaped smooth domain of the same volume, then for any fixed \(j\in \mathbb {N}\) we have \(E_j(Q^B_\alpha )>E_j(Q^\Omega _\alpha )\) for large \(\alpha \). An open question concerning a larger class of domains is formulated.
  相似文献   

8.
We consider the following fractional \( p \& q\) Laplacian problem with critical Sobolev–Hardy exponents
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s}_{p} u + (-\Delta )^{s}_{q} u = \frac{|u|^{p^{*}_{s}(\alpha )-2}u}{|x|^{\alpha }}+ \lambda f(x, u) &{} \text{ in } \Omega \\ u=0 &{} \text{ in } \mathbb {R}^{N}{\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \(0<s<1\), \(1\le q<p<\frac{N}{s}\), \((-\Delta )^{s}_{r}\), with \(r\in \{p,q\}\), is the fractional r-Laplacian operator, \(\lambda \) is a positive parameter, \(\Omega \subset \mathbb {R}^{N}\) is an open bounded domain with smooth boundary, \(0\le \alpha <sp\), and \(p^{*}_{s}(\alpha )=\frac{p(N-\alpha )}{N-sp}\) is the so-called Hardy–Sobolev critical exponent. Using concentration-compactness principle and the mountain pass lemma due to Kajikiya [23], we show the existence of infinitely many solutions which tend to be zero provided that \(\lambda \) belongs to a suitable range.
  相似文献   

9.
Let F be an \(L^2\)-normalized Hecke Maaß cusp form for \(\Gamma _0(N) \subseteq {\mathrm{SL}}_{n}({\mathbb {Z}})\) with Laplace eigenvalue \(\lambda _F\). If \(\Omega \) is a compact subset of \(\Gamma _0(N)\backslash {\mathrm{PGL}}_n/\mathrm{PO}_{n}\), we show the bound \(\Vert F|_{\Omega }\Vert _{\infty } \ll _{ \Omega } N^{\varepsilon } \lambda _F^{n(n-1)/8 - \delta }\) for some constant \(\delta = \delta _n> 0\) depending only on n.  相似文献   

10.
In this paper we study the following singular p(x)-Laplacian problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 2\), with smooth boundary \(\partial \Omega \), \(\beta \in C^1(\bar{\Omega })\) with \( 0< \beta (x) <1\), \(p\in C^1(\bar{\Omega })\), \(q \in C(\bar{\Omega })\) with \(p(x)>1\), \(p(x)< q(x) +1 <p^*(x)\) for \(x \in \bar{\Omega }\), where \( p^*(x)= \frac{Np(x)}{N-p(x)} \) for \(p(x) <N\) and \( p^*(x)= \infty \) for \( p(x) \ge N\). We establish \(C^{1,\alpha }\) regularity of weak solutions of the problem and strong comparison principle. Based on these two results, we prove the existence of multiple (at least two) positive solutions for a certain range of \(\lambda \).
  相似文献   

11.
In this paper we consider the following nonhomogeneous semilinear fractional Laplacian problem
$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u+u=\lambda (f(x,u)+h(x)) \,\, \text {in}\,\, \mathbb {R}^N,\\ u\in H^s(\mathbb {R}^N), u>0\,\, \text {in}\,\, \mathbb {R}^N, \end{array}\right. } \end{aligned}$$
where \(\lambda >0\) and \(\lim _{|x|\rightarrow \infty }f(x,u)=\overline{f}(u)\) uniformly on any compact subset of \([0,\infty )\). We prove that under suitable conditions on f and h, there exists \(0<\lambda ^*<+\infty \) such that the problem has at least two positive solutions if \(\lambda \in (0,\lambda ^*)\), a unique positive solution if \(\lambda =\lambda ^*\), and no solution if \(\lambda >\lambda ^*\). We also obtain the bifurcation of positive solutions for the problem at \((\lambda ^*,u^*)\) and further analyse the set of positive solutions.
  相似文献   

12.
Let \(\Omega \) be a bounded domain with smooth boundary in an n-dimensional metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and let \(\mathbf {u}=(u^1, \ldots , u^n)\) be a vector-valued function from \(\Omega \) to \(\mathbb {R}^n\). In this paper, we investigate the Dirichlet eigenvalue problem of a system of equations of the drifting Laplacian: \(\mathbb {L}_{\phi } \mathbf {u} + \alpha [ \nabla (\mathrm {div}\mathbf { u}) -\nabla \phi \mathrm {div} \mathbf {u}]= - \widetilde{\sigma } \mathbf {u}\), in \( \Omega \), and \(u|_{\partial \Omega }=0,\) where \(\mathbb {L}_{\phi } = \Delta - \nabla \phi \cdot \nabla \) is the drifting Laplacian and \(\alpha \) is a nonnegative constant. We establish some universal inequalities for lower order eigenvalues of this problem on the metric measure space \((\mathbb {R}^n, \langle ,\rangle , e^{-\phi }dv)\) and the Gaussian shrinking soliton \((\mathbb {R}^n, \langle ,\rangle _{\mathrm {can}}, e^{-\frac{|x|^2}{4}}dv, \frac{1}{2})\). Moreover, we give an estimate for the upper bound of the second eigenvalue of this problem in terms of its first eigenvalue on the gradient product Ricci soliton \((\Sigma \times \mathbb {R}, \langle ,\rangle , e^{-\frac{\kappa t^2}{2}}dv, \kappa )\), where \( \Sigma \) is an Einstein manifold with constant Ricci curvature \(\kappa \).  相似文献   

13.
For the natural two-parameter filtration \(\left( {\mathcal {F}_\lambda }: {\lambda \in P}\right) \) on the boundary of a triangle building, we define a maximal function and a square function and show their boundedness on \(L^p(\Omega _0)\) for \(p \in (1, \infty )\). At the end, we consider \(L^p(\Omega _0)\) boundedness of martingale transforms. If the building is of \({\text {GL}}(3, \mathbb {Q}_p)\), then \(\Omega _0\) can be identified with p-adic Heisenberg group.  相似文献   

14.
We study, in the semiclassical limit, the singularly perturbed nonlinear Schrödinger equations
$$\begin{aligned} L^{\hbar }_{A,V} u = f(|u|^2)u \quad \hbox {in}\quad \mathbb {R}^N \end{aligned}$$
(0.1)
where \(N \ge 3\), \(L^{\hbar }_{A,V}\) is the Schrödinger operator with a magnetic field having source in a \(C^1\) vector potential A and a scalar continuous (electric) potential V defined by
$$\begin{aligned} L^{\hbar }_{A,V}= -\hbar ^2 \Delta -\frac{2\hbar }{i} A \cdot \nabla + |A|^2- \frac{\hbar }{i}\mathrm{div}A + V(x). \end{aligned}$$
(0.2)
Here, f is a nonlinear term which satisfies the so-called Berestycki-Lions conditions. We assume that there exists a bounded domain \(\Omega \subset \mathbb {R}^N\) such that
$$\begin{aligned} m_0 \equiv \inf _{x \in \Omega } V(x) < \inf _{x \in \partial \Omega } V(x) \end{aligned}$$
and we set \(K = \{ x \in \Omega \ | \ V(x) = m_0\}\). For \(\hbar >0\) small we prove the existence of at least \({\mathrm{cupl}}(K) + 1\) geometrically distinct, complex-valued solutions to (0.1) whose moduli concentrate around K as \(\hbar \rightarrow 0\).
  相似文献   

15.
Let \(\Omega \) be a smooth bounded domain in \({\mathbb {R}}^N\) (\(N>2\)) and \(\delta (x):=\text {dist}\,(x,\partial \Omega )\). Assume \(\mu \in {\mathbb {R}}_+, \nu \) is a nonnegative finite measure on \(\partial \Omega \) and \(g \in C(\Omega \times {\mathbb {R}}_+)\). We study positive solutions of
$$\begin{aligned} -\Delta u - \frac{\mu }{\delta ^2} u = g(x,u) \text { in } \Omega , \qquad \text {tr}^*(u)=\nu . \end{aligned}$$
(P)
Here \(\text {tr}^*(u)\) denotes the normalized boundary trace of u which was recently introduced by Marcus and Nguyen (Ann Inst H Poincaré Anal Non Linéaire, 34, 69–88, 2017). We focus on the case \(0<\mu < C_H(\Omega )\) (the Hardy constant for \(\Omega \)) and provide qualitative properties of positive solutions of (P). When \(g(x,u)=u^q\) with \(q>0\), we prove that there is a critical value \(q^*\) (depending only on \(N, \mu \)) for (P) in the sense that if \(q<q^*\) then (P) possesses a solution under a smallness assumption on \(\nu \), but if \(q \ge q^*\) this problem admits no solution with isolated boundary singularity. Existence result is then extended to a more general setting where g is subcritical [see (1.28)]. We also investigate the case where g is linear or sublinear and give an existence result for (P).
  相似文献   

16.
We consider the positive solutions of the nonlinear eigenvalue problem \(-\Delta _{\mathbb {H}^n} u = \lambda u + u^p, \) with \(p=\frac{n+2}{n-2}\) and \(u \in H_0^1(\Omega ),\) where \(\Omega \) is a geodesic ball of radius \(\theta _1\) on \(\mathbb {H}^n.\) For radial solutions, this equation can be written as an ordinary differential equation having n as a parameter. In this setting, the problem can be extended to consider real values of n. We show that if \(2<n<4\) this problem has a unique positive solution if and only if \(\lambda \in \left( n(n-2)/4 +L^*\,,\, \lambda _1\right) .\) Here \(L^*\) is the first positive value of \(L = -\ell (\ell +1)\) for which a suitably defined associated Legendre function \(P_{\ell }^{-\alpha }(\cosh \theta ) >0\) if \(0 < \theta <\theta _1\) and \(P_{\ell }^{-\alpha }(\cosh \theta _1)=0,\) with \(\alpha = (2-n)/2\).  相似文献   

17.
In this paper, we study \(\lambda \)-constacyclic codes over the ring \(R=\mathbb {Z}_4+u\mathbb {Z}_4\) where \(u^{2}=1\), for \(\lambda =3+2u\) and \(2+3u\). Two new Gray maps from R to \(\mathbb {Z}_4^{3}\) are defined with the goal of obtaining new linear codes over \(\mathbb {Z}_4\). The Gray images of \(\lambda \)-constacyclic codes over R are determined. We then conducted a computer search and obtained many \(\lambda \)-constacyclic codes over R whose \(\mathbb {Z}_4\)-images have better parameters than currently best-known linear codes over \(\mathbb {Z}_4\).  相似文献   

18.
In this paper, we establish a multiplicity result of nontrivial weak solutions for the problem \((-\Delta )^{\alpha } u +u= h(u)\)    in \(\Omega _{\lambda }\), \(u=0\)    on \(\partial \Omega _{\lambda }\), where \(\Omega _{\lambda }=\lambda \Omega \), \(\Omega \) is a smooth and bounded domain in \({\mathbb {R}}^N, N>2\alpha \), \(\lambda \) is a positive parameter, \(\alpha \in (0,1)\), \((-\Delta )^{\alpha }\) is the fractional Laplacian and the nonlinear term h(u) has subcritical growth. We use minimax methods, the Ljusternick–Schnirelmann and Morse theories to get multiplicity results depending on the topology of \(\Omega \).  相似文献   

19.
We derive a discrete version of the results of Davini et al. (Convergence of the solutions of the discounted Hamilton–Jacobi equation. Invent Math, 2016). If M is a compact metric space, \(c : M\times M \rightarrow \mathbb {R}\) a continuous cost function and \(\lambda \in (0,1)\), the unique solution to the discrete \(\lambda \)-discounted equation is the only function \(u_\lambda : M\rightarrow \mathbb {R}\) such that
$$\begin{aligned} \forall x\in M, \quad u_\lambda (x) = \min _{y\in M} \lambda u_\lambda (y) + c(y,x). \end{aligned}$$
We prove that there exists a unique constant \(\alpha \in \mathbb {R}\) such that the family of \(u_\lambda +\alpha /(1-\lambda )\) is bounded as \(\lambda \rightarrow 1\) and that for this \(\alpha \), the family uniformly converges to a function \(u_0 : M\rightarrow \mathbb {R}\) which then verifies
$$\begin{aligned} \forall x\in X, \quad u_0(x) = \min _{y\in X}u_0(y) + c(y,x)+\alpha . \end{aligned}$$
The proofs make use of Discrete Weak KAM theory. We also characterize \(u_0\) in terms of Peierls barrier and projected Mather measures.
  相似文献   

20.
In this paper we study perturbed Ornstein–Uhlenbeck operators
$$\begin{aligned} \left[ \mathcal {L}_{\infty } v\right] (x)=A\triangle v(x) + \left\langle Sx,\nabla v(x)\right\rangle -B v(x),\,x\in \mathbb {R}^d,\,d\geqslant 2, \end{aligned}$$
for simultaneously diagonalizable matrices \(A,B\in \mathbb {C}^{N,N}\). The unbounded drift term is defined by a skew-symmetric matrix \(S\in \mathbb {R}^{d,d}\). Differential operators of this form appear when investigating rotating waves in time-dependent reaction diffusion systems. We prove under certain conditions that the maximal domain \(\mathcal {D}(A_p)\) of the generator \(A_p\) belonging to the Ornstein–Uhlenbeck semigroup coincides with the domain of \(\mathcal {L}_{\infty }\) in \(L^p(\mathbb {R}^d,\mathbb {C}^N)\) given by
$$\begin{aligned} \mathcal {D}^p_{\mathrm {loc}}(\mathcal {L}_0)=\left\{ v\in W^{2,p}_{\mathrm {loc}}\cap L^p\mid A\triangle v + \left\langle S\cdot ,\nabla v\right\rangle \in L^p\right\} ,\,1<p<\infty . \end{aligned}$$
One key assumption is a new \(L^p\)-dissipativity condition
$$\begin{aligned} |z|^2\mathrm {Re}\,\left\langle w,Aw\right\rangle + (p-2)\mathrm {Re}\,\left\langle w,z\right\rangle \mathrm {Re}\,\left\langle z,Aw\right\rangle \geqslant \gamma _A |z|^2|w|^2\;\forall \,z,w\in \mathbb {C}^N \end{aligned}$$
for some \(\gamma _A>0\). The proof utilizes the following ingredients. First we show the closedness of \(\mathcal {L}_{\infty }\) in \(L^p\) and derive \(L^p\)-resolvent estimates for \(\mathcal {L}_{\infty }\). Then we prove that the Schwartz space is a core of \(A_p\) and apply an \(L^p\)-solvability result of the resolvent equation for \(A_p\). In addition, we derive \(W^{1,p}\)-resolvent estimates. Our results may be considered as extensions of earlier works by Metafune, Pallara and Vespri to the vector-valued complex case.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号