首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion poloidal rotation and heat conductivity in collisional plasmas of axially-symmetric tokamaks with elongated cross-sections and with subsonic toroidal plasma flows are considered. It is shown that subsonic toroidal plasma flows, induced by neutral beam injection or radio frequency waves, can strongly affect the poloidal plasma velocity and ion heat conductivity in collisional plasmas of tokamaks. The transport coefficients also depend on the tokamak ellipticity parameter which, in combination with the Mach number, allows to operate transport processes at smaller values of the toroidal Mach number. The importance of taking into account the ion-electron heat exchange and electron temperature toroidal perturbations to find ion temperature toroidal perturbations is demonstrated. This work was partially supported by the State University of Rio de Janeiro (UERJ) and the Rio de Janeiro Research Foundation (FAPERJ).  相似文献   

2.
The influences of the temperature gradient and toroidal effects on drift-tearing modes have been studied using the Gyrokinetic Toroidal code. After the thermal force term is introduced into the parallel electron force balance equation, the equilibrium temperature gradient can cause a significant increase in the growth rate of the drifttearing mode and a broadening of the mode structure. The simulation results show that the toroidal effects increase the growth rate of the drift-tearing mode, and the contours of the perturbation field "squeeze" toward the stronger field side in the poloidal section. Finally, the hybrid model for fluid electrons and kinetic ions has been studied briefly, and the dispersion relation of the drift-tearing mode under the influence of ion finite Larmor radius effects is obtained. Compared with the dispersion relation under the fluid model, a stabilizing effect of the ion finite Larmor radius is observed.  相似文献   

3.
Fast, high resolution multichannel Thomson scattering is used to quantitatively determine plasma perturbations induced by type-I edge-localized modes (ELMs) in the low-field side edge of ASDEX Upgrade H-mode plasmas. 2D snapshots of temperature and density, deduced from the laser light scattered in a vertically elongated, poloidal array of 5 x 10 scattering volumes, are obtained in the hot, steep edge gradient zone, which is difficult to access by other diagnostics. Local maxima and minima with large amplitude are identified during ELMs and even in the precursor phase, both in density and temperature. Interpreting these structures as footprints of approximately field aligned helical modes in accordance with previous experimental and theoretical work, toroidal mode numbers between 8 and 20 are obtained, roughly consistent with corresponding scrape-off layer and divertor measurements.  相似文献   

4.
P.K. Shukla 《Physics letters. A》2008,372(24):4478-4479
It is shown that resonant nonlinear interactions between the magnetic-field aligned right-hand circularly polarized electromagnetic (CPEM) electron-cyclotron waves and electrons can produce electron temperature anisotropy due to the stochastic electron heating by waves in magnetized plasmas. The present result can thus account for the simultaneous presence of CPEM waves and an anisotropic electron temperature distribution in laboratory and space magnetoplasmas.  相似文献   

5.
Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.  相似文献   

6.
The filamentary nature and dynamics of edge-localized modes (ELMs) in the KSTAR high-confinement mode plasmas have been visualized in 2D via electron cyclotron emission imaging. The ELM filaments rotating with a net poloidal velocity are observed to evolve in three distinctive stages: initial linear growth, interim quasisteady state, and final crash. The crash is initiated by a narrow fingerlike perturbation growing radially from a poloidally elongated filament. The filament bursts through this finger, leading to fast and collective heat convection from the edge region into the scrape-off layer, i.e., ELM crash.  相似文献   

7.
The dispersion relation of the dust-lower-hybrid wave has been derived using the quantum hydrodynamic model of plasmas in an ultracold Fermi dusty plasma in the presence of a uniform external magnetic field. The dust dynamics, electron Fermi temperature effect, and the quantum corrections give rise to significant effects on the dust-lower-hybrid wave of the magnetized quantum dusty plasmas.  相似文献   

8.
9.
It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.  相似文献   

10.
M. Lazar 《Physics letters. A》2008,372(14):2446-2449
Counterstreaming plasmas exhibits an electromagnetic unstable mode of filamentation type, which is responsible for the magnetization of plasma system. It is shown that filamentation instability becomes significantly faster when plasma is hotter in the streaming direction. This is relevant for astrophysical sources, where strong magnetic fields are expected to exist and explain the nothermal emission observed.  相似文献   

11.
用圆柱位形的磁流体动力学方程对由反常电子粘滞性引起的双撕裂模的线性行为做了数值研究.分析了两个有理面的间距、粘滞率大小和极向模数对双撕裂模模式结构的影响,给出了各种情况下双撕裂模线性增长率跟表征反常电子粘滞率大小的电子雷诺数的定标关系.  相似文献   

12.
High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study the crash process and heat transfer in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to a small poloidally localized puncture in the magnetic surface at both the low and the high field sides of the poloidal plane. This observation closely resembles the "fingering event" of the ballooning mode model with the high- mode only predicted at the low field side.  相似文献   

13.
从弗拉索夫方程出发,导出了托卡马克等离子体中漂移不稳定性的回旋动理学二维本征模积分方程组。该方程组保留了离子的动理学效应,包括沿磁场的运动、磁场梯度和曲率漂移以及有限拉莫半径效应。与传统的采用气球模表象得到的一维回旋动理学方程(其只能给出不稳定模沿磁场线的结构)不同,该方程组不仅能给出托卡马克等离子体中漂移不稳定模的径向结构,同时还考虑了由离子的环形性漂移引起的相邻极向模之间的线性耦合,进而得到模的极向结构。该结果为相应的数值模拟研究提供了理论基础。  相似文献   

14.
Linear and nonlinear ion acoustic waves in the presence of adiabatically heated ions in magnetized electron-positron-ion plasmas are studied. The Sagdeev potential approach is employed to obtain the energy integral equation in such a mulitcomponent plasma using fluid theory. It is found that electron density humps are formed in the subsonic region in magnetized electron-positron-ion plasmas. The amplitude of electron density hump is decreased with the increase of hot ion temperature in electron-positron-ion plasmas. However, the increase in positron concentration and obliqueness of the wave increases the amplitude of nonlinear structure. The increase in positron concentration also reduces the width of the nonlinear structure in a magnetized multicomponent plasma. The numerical solutions in the form of solitary pulses are also presented for different plasma cases. The results may be applicable to astrophysical plasma situations, where magnetized electron-positron-ion plasma with hot ions can exist.  相似文献   

15.
A two-dimensional integral full-wave model is used to calculate poloidal forces driven by mode conversion in tokamak plasmas. In the presence of a poloidal magnetic field, mode conversion near the ion-ion hybrid resonance is dominated by a transition from the fast magnetosonic wave to the slow ion cyclotron wave. The poloidal field generates strong variations in the parallel wave spectrum that cause wave damping in a narrow layer near the mode conversion surface. The resulting poloidal forces in this layer drive sheared poloidal flows comparable to those in direct launch ion Bernstein wave experiments.  相似文献   

16.
It is hypothesized that radial electron heat transport in magnetically confined toroidal plasmas results from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature is equilibrated along magnetic field lines a long length L (> poloidal periodicity length piR0q), which is the minimum of the electron collision length and an effective field line length. Thus, diffusing field lines induce a radial electron heat diffusivity M identical with L/(piR0q) approximately 10>1 times the magnetic field diffusivity eta/mu0 approximately nue(c/omegap)2.  相似文献   

17.
We present a theoretical investigation of the excitation of multiple electrostatic wakefields by the ponderomotive force of a short electromagnetic pulse propagating through a dense plasma. It is found that the inclusion of the quantum statistical pressure and quantum electron tunneling effects can qualitatively change the classical behavior of the wakefield. In addition to the well-known plasma oscillation wakefield, with a wavelength of the order of the electron skin depth (λe=c/ωpe, which in a dense plasma is of the order of several nanometers, where c is the speed of light in vacuum and ωpe is the electron plasma frequency), wakefields in dense plasmas with a shorter wavelength (in comparison with λe) are also excited. The wakefields can trap electrons and accelerate them to extremely high energies over nanoscales.  相似文献   

18.
Shear flows perpendicular to the anti-parallel reconnecting magnetic field are often observed in magnetosphere and interplanetary plasmas, and in laboratory plasmas toroidal differential rotations can also be generated in magnetic confinement devices. Our study finds that such shear flows can generate bipolar or quadrupolar out-of-plane magnetic field perturbations in a two-dimensional resistive MHD reconnection without the Hall effects. The quadrupolar structure has otherwise been thought a typical Hall MHD reconnection feature caused by the in-plane electron convection. The results will challenge the conventional understanding and satellite observations of the signature of reconnection evidences in space plasmas.  相似文献   

19.
Dusty plasmas exist almost everywhere in the Universe and relevant nonlinear studies are encouragingly going to non-planar geometry. On our recent construction of a spherical Kadomtsev–Petviashvili model for the dust-ion-acoustic waves in a cosmic dusty plasma [B. Tian, Y.-T. Gao, Phys. Lett. A 340 (2005) 243], Hong [W.P. Hong, Phys. Lett. A (2006), doi:10.1016/j.physleta.2006.11.021, in press] comments that certain interesting coordinate transformations exist, with presentation of a transformed equation (TE) and nebulon solutions. In this Reply, we point out that the TE is valuable to the studies on both cosmic plasmas and applied mathematics. We obtain an auto-Bäcklund transformation on the TE and more general nebulons. With series of pictures, we discuss nebulon structures out of the TE, and address that there are cosmic plasma systems for which the TE is valid. We remove a constraint set in that Comment so that the TE can be useful for the Saturn-F-ring-typed dusty plasmas as well.  相似文献   

20.
HL-2Aƫ����λ�εı�Ե������������   总被引:1,自引:1,他引:0  
通过中平面活动10探针组、往复快速扫描4探针和低杂波天线口的固定4探针测量了主等离子体边缘的温度、密度、悬浮电位、径向和极向电场、雷诺协强、径向和极向等离子体流速及其径向分布。用偏滤器靶板上的14组嵌入式静电3探针阵列测量了同一环向截面的内外中性化板上的电子温度、密度、悬浮电位及其分布。比较了在孔栏位形和偏滤器位形下边缘等离子体特性的差异,特别是两种位形下边缘温度和密度衰减长度的变化。分析了在多脉冲超声分子束加料和低杂波注入条件下的边界等离子体特性,以及雷诺协强的径向梯度与极向流和径向电场梯度与湍流损失的相互关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号