首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical expression for the line shape of the Mössbauer spectra in the presence of electron hopping between Fe2+ and Fe3+ is obtained by using a simple stochastic model. Analyses based upon this expression show that the origin of the complicated Mössbauer spectra observed in the magnetic semiconductors Fe1?xCuxCr2S4 (0<x<0.5) at 77 K is electron hopping between Fe+2 and Fe3+ This hopping occurs at a rate of a few MHz. Quantitative estimates are given for some parameters; the isomer shifts, the internal magnetic fields, the quadrupole splittings and the proportions of Fe2+ and Fe3+. The valence distribution in this system is determined from the results. For example, the distribution Fe2+0.69Fe3+0.29Cu1+0.02Cr3+1.72Cr2+0.28S2?4 is obtained for x = 0.02. The existence of Cr2+ is concluded.  相似文献   

2.
The electrical transport properties of LaFe1? x Ni x O3 (0.1 ≤ x ≤ 0.6) bulk samples were investigated over a wide temperature range, i.e. 9–300 K. Powder x-ray diffraction patterns at room temperature showed that all samples were formed in a single phase. However, a structural transformation was observed from orthorhombic (Pnma) to rhombohedral crystal symmetry at x > 0.5 in Ni-doped samples, which is supported by the electrical transport analysis. Temperature-dependent resistivity data were fitted using Mott's variable-range hopping model for a limited range of temperatures to calculate the hopping distance and the density of states at Fermi level. It was found that all parameters vary systematically with an increase in Ni concentration. Moreover, the resistivity data were also fitted using the small polaron hopping (SPH) model. The non-adiabatic SPH conduction mechanism is followed up to 50% Ni concentration, whereas an adiabatic hopping conduction mechanism is active above it. Such a change in the conduction mechanism is accompanied by subtle electronically induced structural changes involving Fe3+–O–Fe3+ and Fe3+–O–Ni3+ bond angles and bond lengths. Thus, we suggest that the transport properties can be explained according to the additional delocalization of charge carriers induced by Ni doping.  相似文献   

3.
Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu2+ surface site environments in Blc. viridis RCs. Herein, Cu2+ has been used to spectroscopically probe the structure of these Cu2+ site(s) in response to freezing conditions, temperature, and charge separation. One Cu2+ environment in Blc. viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA2+ site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu2+ environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu2+ is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.  相似文献   

4.

The frequency (1-10 kHz) and temperature (80-350 K) dependences of the ac conductivity and dielectric constant of the V2O5-MnO-TeO2 system, containing two transition-metal ions, have been measured. The dc conductivity dc measured in the high-temperature range (200-450 K) decreases with addition of the oxide MnO. This is considered to be due to the formation of bonds such as V--O--Mn and Mn--O--Mn in the glass. The conductivity arises mainly from polaron hopping between V4+M and V5+ ions. It is found that a mechanism of adiabatic small-polaron hopping is the most appropriate conduction model for these glasses. This is in sharp contrast with the behaviour of the Mn-free V2O5-TeO2 glass, in which non-adiabatic hopping takes place. High-temperature conductivity data satisfy Mott's small-polaron hopping model and also a model proposed by Schnakenberg in 1968. A power-law behaviour ( ac = s , with s < 1) is well exhibited by the ac conductivity σac data of these glasses. Analysis of dielectric data indicates a Debye-type relaxation behaviour with a distribution of relaxation times. The MnO-concentration-dependent σac data follow an overlapping large-polaron tunnelling model over the entire range of temperatures studied. The estimated model parameters are reasonable and consistent with changes in composition.  相似文献   

5.
The spin-Hamiltonian parameters (the anisotropic g factors g || and g and the hyperfine structure constants A || and A ) for the impurity Cu2+ in Li2B4O7 are theoretically investigated using the high-order perturbation formulas of these parameters for a 3d 9 ion in tetragonally elongated octahedra. In the calculation formulas, the tetragonal field parameters Ds and Dt are determined from the superposition model, by considering the relative axial elongation of the oxygen octahedron around Cu2+ due to the Jahn-Teller effect. Based on the calculations, the relative axial elongation of about 0.21 Å for the tetragonal Cu2+ center was found.  相似文献   

6.
ESR studies were conducted on Cu2+-doped bis-(5,5′-diethylbarbiturato)bis picoline Zn(II). Two Cu2+ lattice sites, Cu2+(I) and Cu2+(II), were identified. These sites exhibit two sets of four hyperfine lines in all directions. The g factor and hyperfine splitting were calculated from ESR absorption spectra: gx ?=?2.0201?±?0.002, gy ?=?2.0900?±?0.002, gz ?=?2.1634?±?0.002, Ax ?=?(30?±?2)?×?10?4?cm?1, Ay ?=?(40?±?2)?×?10?4?cm?1 and Az ?=?(154?±?2)?×?10?4?cm?1. It was found that Cu2+ enters the lattice substitutionally. The ground-state wavefunction of the Cu2+ ion in this lattice was determined from the spin Hamiltonian constants obtained from the ESR studies. With the help of an optical absorption study, the nature of the bonding in the complex is also discussed.  相似文献   

7.
Semiconducting TlSr2RCu2O7 (R=Pr or Er) with a 1212-type structure has been synthesized in the single-phase form. Partial substitution of Sr2+ for R3+ converts this semiconductor to a 90 K superconductor TlSr2(R1–y Sr y )Cu2O7. A combination substitution, Sr2+ for R3+ and Pb4+ for Tl3+, leads to the Ca-free 100 K superconductor (Tl, Pb)Sr2(R, Sr)Cu2O7. The results are explained in the framework of the mixed Cu2+/Cu3+ valence.  相似文献   

8.
Abstract

(50?x/2)Na2O–xCuO–(50?x/2)P2O5 glasses (x=1, 5, 15, or 30 mol%) have been prepared and characterized by electron paramagnetic resonance (EPR) and magnetic susceptibility measurements. The shape of the Cu2+ EPR spectrum depends on the Cu content, and the corresponding computer simulations suggest that the Cu2+ ions occupy two different sites in these glasses: one of them is preponderant at low Cu content and the other is preponderant at high content, in which the Cu2+–Cu2+ interactions are more important. From EPR parameters, it was found that for the site at low content, the covalency of copper ion bonding with the surrounding ligands is appreciable. The magnetic susceptibility data appear to follow the Curie–Weiss law (χ=C/(Tp)) with negative paramagnetic Curie temperature θp indicating antiferromagnetic interactions between Cu2+ ions that are more significant in the samples with high Cu content, in agreement with EPR results.  相似文献   

9.
The magnetic environments of Cu2+-doped potassium hydrogen citrate (C6H7KO7) complex have been identified by electron paramagnetic resonance (EPR) technique. The angular variation of the EPR spectra has shown that three different Cu2+ complexes are located in different chemical environments, and each environment contains one magnetic Cu2+ site occupying substantial positions in the lattice and showing a very high angular dependence. The principal g and the hyperfine structure parameter (A) values of three sets of Cu2+ complex groups are determined. The covalency parameter, mixing coefficients and Fermi-contact term of the complex are obtained, and the ground-state wave function of the Cu2+ ion in the lattice has been constructed.  相似文献   

10.
The local structure of the Cu2+ centers in alkali lead tetraborate glasses was theoretically studied based on the optical spectra data and high-order perturbation formulas of the spin Hamiltonian parameters (electron paramagnetic resonance g factors g, g and hyperfine structure constants A, A) for a 3d9 ion in a tetragonally elongated octahedron. In these formulas, the relative axial elongation of the ligand O2? octahedron around the Cu2+ due to the Jahn–Teller effect is taken into account by considering the contributions to the g factors from the tetragonal distortion which is characterized by the tetragonal crystal-field parameters Ds and Dt. From the calculations, the ligand O2? octahedral around Cu2+ is determined to suffer about 19.2% relative elongation along the C4 axis of the alkali lead tetraborate glass system, and a negative sign for A and a positive sign for A for these Cu2+ centers are suggested in the discussion.  相似文献   

11.
W.C. Zheng  L. He  Y. Mei 《哲学杂志》2013,93(9):789-796
The spin-Hamiltonian (SH) parameters (g factors g //, g ⊥ and hyperfine structure constants 63 A //, 63 A ⊥, 65 A //, 65 A ⊥) for Cu2+ ions in the trigonally-distorted tetrahedral sites of ZnO and GaN crystals are calculated from a complete diagonalization (of energy matrix) method (CDM) based on a two spin-orbit parameter model for d 9 ions in trigonal symmetry. In the method, the Zeeman and hyperfine interaction terms are added to the Hamiltonian in the conventional CDM. The calculated results are in good agreement with the experimental values. The calculated SH parameters are also compared with those using the traditional diagonalization method or perturbation method only within the 2 T 2 term. It appears that, for exact calculations of SH parameters of d 9 ions in trigonal tetrahedral clusters in crystals, the present CDM is preferable to the traditional diagonalization method or perturbation method within the 2 T 2 term. The local structures of Cu2+ centers (which differ from the corresponding structure in the host crystal) in ZnO : Cu2+ and GaN : Cu2+ are obtained from the calculations. The results are discussed.  相似文献   

12.
Mössbauer spectra of La1–x Ba x FeO3–y recorded at room temperature for various values of x show a six-line and/or a single-line subspectrum. The six-line subspectrum with IS=0.41 mm/s and H=52 T results from an orthorhombic perovskite containing only Fe3+ ions. The single-line subspectrum at 0.17 mm/s from a cubic perovskite can be assigned to neither Fe3+ nor Fe4+ but to an intermediate valence state, which may be due to electron hopping between the Fe3+ and Fe4+ ions on the identical octahedral sites. The temperature dependence of electron hopping in the compound La0.40Ba0.60FeO3–y is presented.  相似文献   

13.
The EcoRI restriction endonuclease requires one divalent metal ion in each of two symmetrical and identical catalytic sites to catalyse double-strand DNA cleavage. Recently, we showed that Cu2+ binds outside the catalytic sites to a pair of new sites at H114 in each sub-unit, and inhibits Mg2+-catalysed DNA cleavage. In order to provide more detailed structural information on this new metal ion binding site, we performed W-band (~94 GHz) and X-band (~9.5 GHz) electron spin resonance spectroscopic measurements on the EcoRI–DNA–(Cu2+)2 complex. Cu2+ binding results in two distinct components with different gzz and Azz values. X-band electron spin echo envelope modulation results indicate that both components arise from a Cu2+ coordinated to histidine. This observation is further confirmed by the hyperfine sub-level correlation results. W-band electron nuclear double resonance spectra provide evidence for equatorial coordination of water molecules to the Cu2+ ions.  相似文献   

14.
Core-shell nanostructures were grown in silica-based glasses. Copper-copper oxide and iron-iron oxide structures had diameters in the range 3-6 nm, with shell thicknesses ∼1-2 nm. Silver-lithium niobate core-shell nanostructures had diameters in the range 4.2-46 nm and thicknesses varying from 2.2 to 22 nm. X-ray photoelectron spectroscopy studies were carried out on all these specimens. The analyses of these results show the presence of Cu+/Cu2+, Fe2+/Fe3+ and Nb4+/Nb5+ valence states in the above three systems. Electrical resistivity data were fitted satisfactorily to the small polaron hopping model in the case of copper and iron-containing specimens. The presence of ions in the lithium niobate shell provides direct evidence of the formation of localized states between which variable range hopping conduction can be effected.  相似文献   

15.
The polarized Raman scattering from small single crystals of Cu2HgI4 provided assignments for the more prominent Raman features to specific irreducible representations. The E symmetry assignment, mass dependence, and pressure dependence of the 36 cm?1 band in Cu2HgI4 and 24 cm?1 band in Ag2HgI4 indicate that these features approximate the attempt frequency for ion hopping. The unusually high pre-exponential factor in the Arrhenius expression for ion hopping is discussed in light of the observed attempt frequency; we conclude that despite the high activation energy the conduction mechanism is similar to other heavy-metal solid electrolytes.  相似文献   

16.
Dielectric studies on copper doped derivatives of polycrystalline layered mixed alkali trititanate Na1.8K0.2Ti3O7 ceramics indicate that the losses are of mixed type and decrease on copper doping. However, the temperature dependent permittivity plots are characteristic of the diffuse nature of a possible ferroelectric phase transition and hence give indication of relaxor ferroelectric behaviour. From the EPR spectra, recorded at room temperature, it can be seen that the substitution of copper occurs at Ti4+ as preferred site with a divalent oxidation state (Cu2+) for all compositions. Also, copper doping enhances the transition temperature, which is indicative of the stabilization of the existing ferroelectric phase up higher temperatures. Besides bolstering electron hopping conduction, acceptor doping restrains the interlayer ionic conduction. Moreover, electron hopping (polaron) conduction is dominant over the lower temperature region, while interlayer ionic conduction prevails in the higher temperature region.  相似文献   

17.
胡妮  谢卉  汪丽莉  林颖  熊锐  余祖兴  汤五丰  石兢 《物理学报》2006,55(7):3480-3487
采用常规的固相合成法分别制备了Fe3+掺杂和2/3Fe3++1/3Fe2+混合Fe离子掺杂的两组Sr14(Cu1-yFey)24O41系列样品.X射线衍射分析显示,当Fe3+离子的掺杂量y≤0.03以及2/3Fe3++1/3Fe2+混合Fe离子掺杂量y≤0.02时,样 关键词: 强关联电子系统 自旋梯状结构化合物 晶体结构 电输运性质  相似文献   

18.
The g factors of a tetragonally-compressed Cu2+ center in NaCl: Cu+ crystal X-irradiated at room temperature are calculated from the high-order perturbation formulas based on the two-mechanism model. In the model, the contribution to g factors from both crystal-field (CF) and charge-transfer (CT) mechanisms are included. The calculations are based on the defect model that the tetragonally-compressed Cu2+center is assigned to the Cu2+ ion (which is caused by Cu+ ion (at the Na+ site) irradiated by X-ray) associated with a nearest Na+ ion vacancy VNa along C4 axis due to charge compensation. From the calculations, the g factors g|| and g are explained and the defect structure (charactering by the displacement ΔZ of the Cl ion intervening in Cu2+ and VNa) of the Cu2+ (or Cu2+-VNa) center is obtained. The results are discussed.  相似文献   

19.
The electron paramagnetic resonance (EPR) parameters (g factors g //, g and hyperfine structure constants A //, A ) for 15MgO-15Na2O-69B2O3 (MNB):Cu2+ ternary glasses were calculated based on the high-order perturbation formulae of 3d9 ion in a tetragonal symmetry. From the calculations, the defect structures of MNB:Cu2+ ternary glasses were obtained and a negative sign for A // and A for the Cu2+ center is suggested in the discussion.  相似文献   

20.
The significance of heterovalent, substitutional disorder for the distribution of charge carriers in La2−x Sr x CuO4 has been investigated. Disorder is shown to cause strong variations of binding energies of the ions ranging to some eV for Sr contentsx=0.1. Balancing the energy for a hole transport, Cu3++O2−→Cu2++O, and taking binding energy variations into account, the process is realized to become possible without consuming energy for a subset Θ for allx Cu3+ in one formula unit of La2−x Sr x CuO4. The functions Θ(x) are presented for hole transports to apex and in-plane oxygens, respectively. The delocalization of charge carriers is interpreted to be caused by valency disorder on metal lattice sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号