首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the electrorheological (ER) behavior of suspensions prepared from d50 = 2.4 lam talc powder, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these talc powder powders were determined to be 78 days. The ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. The shear stress of talc powder suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and showed a typical shear thinning non-Newtonian visco-elastic behavior. Effects of frequency on the ER activity of talc powder/SO system were also investigated.  相似文献   

2.
In this study, electrorheological (ER) behavior of suspensions prepared from 3.0 and 9.0 μm diatomite particulate, dispersed in insulating silicone oil (SO) medium was investigated. Sedimentation stabilities of suspensions (c = 5 wt%) prepared using these diatomite powders were determined to be 32 days (d = 3 μm) and 24 days (d = 9 μm), respectively. ER activity of all the suspensions was observed to increase with increasing electric field strength, concentration and decreasing shear rate. Shear stress of diatomite suspensions increased linearly with increasing concentrations of the particles and with the applied electric field strength. Electric field viscosity of all the suspensions decreased sharply with increasing shear rate and particle size, showing a typical shear thinning non-Newtonian visco-elastic behavior. Effects of high temperature and polar promoter onto ER activity ofdiatomite/SO system were also investigated.  相似文献   

3.
ELECTRORHEOLOGICAL PROPERTIES OF POLYANILINE/PUMICE COMPOSITE SUSPENSIONS   总被引:1,自引:0,他引:1  
Electrorheological (ER) properties of polyaniline (PAni), pumice and polyaniline/pumice composites (PAPC) were investigated. Polyaniline and PAni/pumice composite were prepared by oxidative polymerization. PAni/pumice particlesbased ER suspensions were prepared in silicone oil (SO), and their ER behavior was investigated as a function of shear rate, electric field strength, concentration and temperature. Sedimentation stabilities of suspensions were determined. It has been found that ER activity of all the suspensions increases with increasing electric field strength, concentration and decreasing shear rate. It has shown that the suspensions have a typical shear thinning non-Newtonian viscoelastic behavior. Yield stress of composite suspensions increased linearly with increasing applied electric field strength and with concentrations of the particles. The effect of high temperature on ER activity of purrfice/silicone oil systems was also investigated.  相似文献   

4.
电流变体是由高介电颗粒分散在低介电油相中组成的悬浮液,在电场作用下,其表观粘度急剧增大甚至发生固化,这种转变过程速度快(达毫秒级)而且是可逆的[1].由于这种独特的电场响应性,电流变体有广阔的工程应用前景.但电流变体在显示电流变效应的同时也表现出复杂...  相似文献   

5.
Biocompatible chitosan particle suspensions in host oils of corn, soybean, and silicone were prepared and their electrorheological (ER) characteristics were examined under the imposition of electric fields. The effects of the weight concentration of particulate chitosan and the strength of the applied electric field on ER response in the various chitosan particle suspensions were investigated via measurements of rheological properties including flow curve, shear viscosity, and yield stress. The yield stresses of the three different chitosan–oil systems showed different values of slope in the electric field, but all data were found to fit well with our previously proposed universal scaling function.  相似文献   

6.
The electrorheological (ER) properties of dodecylbenzenesulfonic acid (DBSA) doped polyaniline suspensions in silicone oil were investigated. In contrast to chemically polymerized polyaniline in an acidic aqueous medium by oxidation polymerization, we adopted an emulsion polymerization technique in which aniline is polymerized in an emulsion of water and a nonpolar (or weakly polar) organic solvent. The effects of electric field strength and particle concentration on the ER properties of DBSA-doped polyaniline suspensions in silicone oil were then examined. Rheological measurements were also carried out using a rotational rheometer with a high-voltage generator in both controlled shear rate and shear stress modes, and the results showed that the ER properties were enhanced by increasing the particle concentration and electric field. Received: 23 August 1999 Accepted: 6 April 2000  相似文献   

7.
稀土掺杂PMMA包裹硅铝氧烷凝胶的ER效应   总被引:3,自引:2,他引:1  
以二氧化硅微粒制备电流变液是研究者使用较多的一种方法[1] ,但由于二氧化硅的密度相对于分散相硅油来说太大 ,所以制成的电流变液稳定性较差。而用导电高分子微粒制成的电流变液则有在高电场时漏电流密度较大的问题[2 ] 。有研究者用直接聚合法在二氧化硅纳米微粒外包裹一层有机共聚物 ,生成一种微囊复合颗粒 ,可以使其相对密度减小 ,提高了电流变液的稳定性[3] 。我们以廉价水玻璃为原料制取硅铝氧烷溶胶 ,在其表面包裹聚甲基丙烯酸甲酯 (PMMA)后 ,得到PMMA包裹的硅铝氧烷凝胶具有相当的稳定性和易极化性 ,易形成较稳定的悬浮液 …  相似文献   

8.
稀土掺杂聚苯撑ER流体的研究   总被引:5,自引:0,他引:5  
选用CeCl4和FeCl3等对自制的对苯撑进行掺杂,将制得的高介电聚苯撑粉末加入到硅油中得到电流变体流体,测量了在电场作用下粘度和漏电流密度,以及相关的物理常数。讨论了电场强度、粒子浓度与粘度和漏电流密度的关系,粘度变化的响应速度和恢复时间,并探讨了其相关机制。  相似文献   

9.
In this study, a block copolymer of methyl methacrylate (MMA) and styrene (St) synthesized by combined ultrasonic irradiation and reverse atom transfer radical polymerization (RATRP) processes was used. PMMA-b-PSt was partially hydrolyzed and converted to a lithium salt, PMMA-b-PSt-Li, before the electrorheological (ER) measurements carried out. Average particle diameter of PMMA-b-PSt-Li polymeric salt was determined by dynamic light scattering (DLS) as 22 mum. Suspensions of PMMA-b-PSt-Li polymeric salts were prepared in silicone oil. ER properties of PMMA-b-PSt-Li/silicone oil suspensions were studied as a function of electric field strength, dispersed phase concentration, shear rate, shear stress, temperature, frequency, and polar promoter. Further dielectric properties of PMMA-b-PSt-Li ionomer were also investigated.  相似文献   

10.
A series of alternating phylene and symmetrically bithiophene containing repeat units and the respective homopolymers have been synthesized and characterized by combining FTIR, UV-Vis spectroscopy, four probe conductivity measurement, TGA and SEM analysis. Quantum mechanical calculations of the structures and infrared spectra of the monomers and respective dimers were compared with experimental results. The polymers are soluble in N-methyl-pyrrolidone (NMP). The samples have conductivities of 10?5 S/cm levels. Thermal degradation analysis results indicated that poly-bithiophene derivatives have higher thermal stabilities than poly-monothiophene derivatives. All samples exhibited different surface morphologies. The electrorheological (ER) properties of polymer suspensions in silicone oil were prepared and ER behavior was investigated as a function of shear rate, electric field strength and frequency.  相似文献   

11.
 Electrorheological behavior of silicone oil suspensions of macroporous poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)]) (0.60 : 0.40 w) hydrolyzed to various degrees was investigated. Polarizability of particles expressed by the particle dipole coefficient and, consequently, pseudoplasticity of the system at low shear rates after application of an external electric field steeply increased with the hydrolysis degree of the copolymer. As the size and shape of particles remain unchanged during hydrolysis, a series of model suspensions with the same hydrodynamic properties (Newtonian or slightly pseudoplastic when no electric field was applied) but with different intensity of the electrorheological effect could be prepared. Under these conditions, the use of Mason number failed to correlate the apparent viscosity of suspensions of particles with different polarizability in the electric field. On the other hand, when polarizability of particles of a suspension system changes due to a higher temperature, a single curve in the plot of apparent viscosity vs. the Mason number could be obtained. Received: 17 February 1998 Accepted: 8 May 1998  相似文献   

12.
We have observed an unusual reduction of shear stress with increasing shear rate under direct current electric fields, for an electrorheological fluid composed of sulfonated poly(styrene-co-divinylbenzene) particles dispersed in silicone oil. At all shear rates, the shear stress under the electric field is larger than that in the absence of the field, indicating that there is still some field-induced agglomeration of the particles. In contrast, the behavior under alternating current electric fields is the Bingham-fluid-type response commonly observed with electrorheological fluids. It is suggested that the conventional dipole–dipole interaction approach based on simplified microstructural models would be unable to explain these phenomena. Received: 27 November 2000 Accepted: 22 May 2001  相似文献   

13.
Particles of polyaniline protonated with perfluorooctanesulfonic acid provided a material with hydrophobic surface. This property enabled its perfect dispersion in silicone oil due to its good compatibility with the hydrophobic medium. In contrast, in a suspension of hydrophilic polyaniline particles doped with sulfamic acid, strong interactions of particles prevailed, which led to the formation of entangled chains of aggregated particles in suspension. The difference in structural properties of suspensions exists already in the absence of electric field and significantly influences their electrorheological behavior after application of electric field. The formation of electrorheological structure has been monitored by recording time dependences of the shear stress and the electric current passing through the flowing suspensions.  相似文献   

14.
Polyaniline (PANI) was synthesized via oxidative coupling polymerization in acid conditions and de-doped in solution of ammonia. The electrorheological (ER) properties of the PANI/silicone oil suspensions were investigated in oscillatory shear as functions of electric field strength, particle concentration, and host fluid viscosity. Consistent with literature, the PANI ER fluid exhibits viscoelastic behavior under the applied electric field and the ER response is strongly enhanced with increasing electric field strength and particle concentration. The dynamic moduli, G' and G' increase dramatically, by 5 orders of magnitude, as the electric field strength is increased to 2 kV/mm. A viscoelastic liquid to solid transition occurs at a critical electric field strength, in the range Ec = 50-200 V/mm, whose value depends on particle concentration and host fluid viscosity. The fibrillar structure formed in the presence of the applied field has a static yield strength tau(y), whose value scales with electric field strength as tau(y) approximately E(1.88). When the field is switched off a residual structure remains, whose yield stress increases with the strength of the applied field and particle concentration. When the applied stress exceeds the yield stress of the residual structure, fast, fully reversible switching of the ER response is obtained.  相似文献   

15.
Aniline oligomers were prepared by the oxidation of aniline with p-benzoquinone in aqueous solutions of methanesulfonic acid (MSA) of various concentrations. Their molecular structures were assessed by Fourier transform infrared spectroscopy. The electrorheological (ER) behavior of their silicone oil suspensions under applied electric field has been investigated. Shear stress at a low shear rate, τ 0.9, was used as a criterion of the rigidity of internal structures created by the application of an electric field. It was established from the fitting of the dielectric spectra of the suspensions with the Havriliak–Negami model that dielectric relaxation strength, as a degree of polarization induced by an external field contributing to the enhanced ER effect, increases and relaxation time, i.e., the response of the particle to the application of the field, decreases when a higher molar concentration of MSA is used. The best values were observed for suspensions of the sample prepared in the presence of 0.5 M of MSA. This suspension creates stiff internal structures under an applied electric field strength of 2 kV mm?1 with τ 0.9 of nearly 50 Pa, which is even slightly of higher value than that obtained for standard polyaniline base ER suspension measured at the same conditions. The concentration of the MSA used in the preparation of oligomers seems to be a crucial factor influencing the conductivity, dielectric properties and, consequently, rheological behavior, and finally ER activity of their suspensions.  相似文献   

16.
We have studied the effect of an external direct current (DC) electric field ( approximately 1 kV/mm) on the rheological properties of colloidal suspensions consisting of aggregates of laponite particles in a silicone oil. Microscopy observations show that, under application of an electric field greater than a triggering electric field Ec approximately 0.6 kV/mm, laponite aggregates assemble into chain- and/or columnlike structures in the oil. Without an applied electric field, the steady-state shear behavior of such suspensions is Newtonian-like. Under application of an electric field larger than Ec, it changes dramatically as a result of the changes in the microstructure: a significant yield stress is measured, and under continuous shear the fluid is shear-thinning. The rheological properties, in particular the dynamic and static shear stress, were studied as a function of particle volume fraction for various strengths (including null) of the applied electric field. The flow curves at constant shear rate can be scaled with respect to both the particle fraction and electric field strength onto a master curve. This scaling is consistent with simple scaling arguments. The shape of the master curve accounts for the system's complexity; it approaches a standard power-law model at high Mason numbers. Both dynamic and static yield stresses are observed to depend on the particle fraction Phi and electric field E as PhibetaEalpha, with alpha approximately 1.85 and beta approximately 1 and 1.70 for the dynamic and static yield stresses, respectively. The yield stress was also determined as the critical stress at which there occurs a bifurcation in the rheological behavior of suspensions that are submitted to a constant shear stress; a scaling law with alpha approximately 1.84 and beta approximately 1.70 was obtained. The effectiveness of the latter technique confirms that such electrorheological (ER) fluids can be studied in the framework of thixotropic fluids. The method is very reproducible; we suggest that it could be used routinely for studying ER fluids. The measured overall yield stress behavior of the suspensions may be explained in terms of standard conduction models for electrorheological systems. Interesting prospects include using such systems for guided self-assembly of clay nanoparticles.  相似文献   

17.
Poly(3-thiopheneacetic acid), PTAA, was synthesized via an oxidative polymerization and doped with perchloric acid to control its conductivity. The rheological properties of the HClO4-doped PTAA/silicone oil suspensions were measured in oscillatory shear to investigate the effects of electric field strength, particle concentration, and particle conductivity on electrorheological (ER) characteristics. The PTAA-based ER fluids exhibit viscoelastic behavior under an applied electric field and the ER response is amplified with increase of electric field strength. The dynamic moduli, G and G, increase dramatically by ten orders of magnitude when the field strength is increased to 2 kV/mm. The suspensions exhibit a transition from fluid-like to solid-like behavior as the field strength increases, and reach a saturated ER response at a field strength of 1 kV/mm. Increase of particle concentration and particle conductivity result in a lower transition field strength. Scaling arguments are presented which successfully superpose the scaled moduli at various electric field strengths onto a single master function of the dimensionless frequency.  相似文献   

18.
In this work, a modified rheometer has been used to gain information on the "start-up" of the shear flow of an electrorheological (ER) fluid consisting of hematite particles dispersed in silicone oil. The results show that unelectrified suspensions behave essentially as fluids, continuously deforming upon application of shear. However, this behavior changes in the presence of an electric field. For low fields and low volume fractions of solids, a solidlike (drastic increase in shear stress after the strain is applied) behavior is observed for small deformations. If the strain is increased, the yield starts and a transition to a viscoelastic-plastic nature is observed. Finally, a plastic behavior is characteristic of the post-yield regime. If the field strength and solids content are high, a discontinuous flow profile develops. These results, together with direct structural observations, suggest that the observed behavior is compatible with the formation of layers of particles electrophoretically deposited on the electrodes; the layers turn into rings when the shear field is applied. It is the slip of the fluid between these rings that can be considered responsible for the ER effect in these suspensions.  相似文献   

19.
In this paper, we present a newly developed rare earth modified amorphous barium strontium titanate (Ba(x)Sr(1-x)TiO3) gel/silicone oil electrorheological (ER) fluid. The ER behaviors of suspensions of pure and rare earth modified amorphous Ba(x)Sr(1-x)TiO3 particles in silicone oil have been investigated under a dc electric field. The shear yield stress of the rare earth modified amorphous BaTiO3 gel/silicone oil ER fluid could reach 14.9 kPa at E=3.5 kV/mm while the leaking current density was very low, about 7.64 microA/cm2. The ER fluids with a higher volume fraction had a higher current density and a higher shear yield stress under the same electric field. The ER fluid has a long-term stability against sedimentation. The problem of caking was not serious and the agglomerated particles could be easily broken up by strongly stirring.  相似文献   

20.
In this study, poly(vinyl chloride) (PVC), polyindole (PIN), and PVC/PIN conducting composites having five different compositions were used. Particle sizes, densities, dielectric constants, and sedimentation ratios of the materials were determined. The zeta‐potentials of the samples were measured in aqueous and nonaqueous (silicone oil [SO]) media. The dispersions prepared in SO were subjected to external electric field strength, and their electrorheological properties were investigated. Then the effects of dispersed particle volume fraction, shear rate, external electric field strength, frequency, and temperature onto electrorheological activities of the dispersions were examined. Further, creep and creep‐recovery tests were applied to the PIN/SO and PVC/PIN/SO dispersions, and reversible viscoelastic deformations were observed. Finally, the vibration damping capacity of PVC (66%)/PIN (34%)/SO dispersion system was tested by using an automobile shock absorber. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号