首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
I.Intr0ducti0nThereexistsalargenumberofmixinglayernowswithsuspendedparticlesinindustryandagriculture,suchasintheburningcourseofc0alpowderandpowderyfuelandinthemixingcourseofpowderymaterials.Bytheoriticalandexperimenta1researches,wecanlearntheinteractionbe…  相似文献   

2.
Horizontal-shear thin-layer homogeneous fluid flow in the open channel is considered. A one-dimensional mathematical model of the development and evolution of the horizontal mixing layer is derived within the framework of the three-layer scheme. The steady-state solutions of the equations of motion are constructed and investigated. In particular, supercritical (subcritical)-in-average flow concepts are introduced and the problem of the mixing layer structure is solved. The proposed model is verified on the basis of comparison with a numerical solution of two-dimensional equations of shallow water theory.  相似文献   

3.
张洪泉 《力学学报》1997,29(2):129-135
用有限差分方法求解三维Navier-Stokes方程和连续性方程,对时间发展的平面混合层中流向涡的产生原因进行了分析.将Rayleigh的轴对称无粘离心不稳定理论推广应用于分析混合层的二维基本流,并导出一无量纲量Ray=-(r/νθ)νθ/r,其中νθ为一流体质点相对于平均速度的速度,r为该质点迹线的曲率半径.当Ray>1.0时就会发生离心不稳定.采用这一判别式后发现混合层中展向涡的周围,尤其是在辫带区,的确存在离心不稳定区域,而过去的实验结果也表明三维不稳定产生于展向涡之间的辫带区.因此有理由认为,除非雷诺数特别小,离心不稳定是流向涡产生和发展的主要原因  相似文献   

4.
时间发展平面混合流的三维演化   总被引:6,自引:0,他引:6  
傅德薰  马延文 《力学学报》1998,30(2):129-137
采用高精度差分方法和群速度控制方法,求解三维可压缩N S方程,直接数值模拟了时间发展的平面混合流.研究了平面混合流三维拟序结构的形成及发展.给出了流动失稳后涡的卷起,相邻两涡的对并,激波的形成及发展.指出,涡对并所诱导产生的激波对三维拟序结构的形成及发展过程是重要的.  相似文献   

5.
二维混合层拟序结构的直接数值模拟   总被引:2,自引:0,他引:2  
本文是在文[1]的基础上,引用Cain等人(1981)提出的映射函数将无穷远的边界变换到有限距离处,用伪谱方法对N-S方程组进行直接数值模拟,研究时间发展的二维混合层的不稳定性,再现了大涡的卷起,涡对的合并与撕裂以及三个涡、四个涡之间的相互作用过程,并将过程进行了动态显示。  相似文献   

6.
A study is made of the influence of a transverse pressure gradient on the mixing of reacting jets of fluorine and hydrogen. The real picture is simulated by a system of simplified Navier-Stokes equations. A comparison is made with calculations based on the complete Navier-Stokes equations and also boundary layer equations. Features of the shock waves are analyzed under conditions of strong heat release in the mixing layer. The influence of these features on the gain in laser situations is considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 18–23, May–June, 1982.We thank G. N. Volchkova, Yu. P. Golovachev, V. A. Pospelov, M. Kh. Strel'ts, and M. L. Shur for helpful discussions.  相似文献   

7.
混合层流动拟序结构的大涡模拟   总被引:2,自引:0,他引:2  
采用大涡模拟方法对空间发展的二维平面混合层进行了数值模拟 ,动量方程采用分步投影法求解 ,亚格子项采用标准Smagorinsky亚格子模式模拟 ,压力泊松方程采用修正的循环消去法快速求解 ,同时求解了标志物输运方程以实现数值流场显示。模拟结果给出了混合层流动的瞬态发展过程以及流动中拟序结构的发展演变过程 ,成功地模拟了混合层发展中的各种瞬态细节过程 ,如涡的卷起、增长 ,涡与涡之间的配对、合并过程 ,以及大涡破碎为小涡的级联过程 ,为各种以混合层流动为原型流动的射流、尾流等工业流动的控制和优化提供了理论基础。  相似文献   

8.
A dense, two-phase numerical methodology is used to study the mixing layer developing behind the detonation of a heterogeneous explosive charge, i.e., a charge comprising of a high explosive with metal particles. The filtered Navier–Stokes equations are solved in addition to a sub-grid kinetic energy equation, along with a recently developed Eulerian–Lagrangian formulation to handle dense flow-fields. The mixing layer resulting from the post-detonation phase of the explosion of a nitromethane charge consisting of inert steel particles is of interest in this study. Significant mixing and turbulence effects are observed in the mixing layer, and the rms of the radial velocity component is found to be about 25% higher than that of the azimuthal and zenith velocity components due to the flow being primarily radial. The mean concentration profiles are self-similar in shape at different times, based on a scaling procedure used in the past for a homogeneous explosive charge. The peak rms of concentration profiles are 23–30% in intensity and decrease in magnitude with time. The behavior of concentration gradients in the mixing layer is investigated, and stretching along the radial direction is observed to decrease the concentration gradients along the azimuth and zenith directions faster than the radial direction. The mixing and turbulence effects in the mixing layer subsequent to the detonation of the heterogeneous explosive charge are superior to that of a homogeneous explosive charge containing the same amount of the high explosive, exemplifying the role played by the particles in perturbing the flow-field. The non-linear growth of the mixing layer width starts early for the heterogeneous explosive charge, and the rate is reduced during the implosion phase in comparison with the homogeneous charge. The turbulence intensities in the mixing layer for the heterogeneous explosive charge are found to be nearly independent of the particle size for two different sizes considered in the initial charge. Overall, this study has provided some useful insights on the mixing layer characteristics subsequent to the detonation of heterogeneous explosives, and has also demonstrated the efficacy of the dense, multiphase formulation for such applications.  相似文献   

9.
The method of nonlinear parabolized stability equations (PSE) is applied in the simulation of vortex structures in compressible mixing layer. The spatially-evolving unstable waves, which dominate the vortex structure, are investigated through spatial marching method. The instantaneous flow field is obtained by adding the harmonic waves to basic flow. The results show that T-S waves do not keep growing exponentially as the linear evolution, the energy transfer to high order harmonic modes, and that finally all harmonic modes get saturated due to nonlinear interaction. The mean flow distortion induced by the nonlinear interaction between the harmonic modes and their conjugate harmonic ones, makes great change of the average flow and increases the thickness of mixing layer. PSE methods can well capture the two- and three-dimensional large scale nonlinear vortex structures in mixing layers such as vortex roll-up, vortex pairing, and Λ vortex.  相似文献   

10.
Tangential discontinuities [1] are introduced in solving several transient and steady-state problems of gas dynamics. These discontinuities are unstable [2] as a result of the effects of viscosity and thermal conductivity. Therefore it is advisable to replace the tangential discontinuity by a mixing region and account for its interaction with the inviscid flows, establishing on the boundaries of this region the conditions of vanishing friction stress and equality of the velocity and temperature components to the corresponding velocity and temperature components of the inviscid flows. This formulation improves the accuracy of the solution of such problems by posing them as problems with irregular reflection and intersection of shock waves [1].The consideration of the interaction of unsteady turbulent mixing regions with the inviscid flow also permits the formulation of several problems in which the effects of viscosity lead to complete rearrangement of the flow pattern (the lambda-configuration) with the interaction of the reflected shock wave with the boundary layer in the shock tube [3,4], the formation of zones of developed separation ahead of obstacles, etc.).In this connection, §1 presents an analysis of the self-similar solutions of the unsteady turbulent mixing equations (a corresponding analysis of the laminar mixing equations which coincide with the boundary layer equations is presented in [1]). It is shown that these self-similar solutions describe, along with the several problems noted above, the problems of the formation of steady jets and mixing zones in the base wake.As an example, §2 presents, within the framework of the proposed schematization, an approximate solution of the problem of the interaction of a shock wave reflected from a semi-infinite wall with the boundary layer on a horizontal plate behind the incident shock wave. The results obtained are applied to the analysis of reflection in a shock tube. Computational results are presented which are in qualitative agreement with experiment [3, 4].  相似文献   

11.
The equations for fiber suspensions in an evolving mixing layer were solved by the spectral method, and the trajectory and orientation of fibers were calculated based on the slender body theory. The calculated spatial and orientation distributions of fibers are consistent with the experimental ones that were performed in this paper. The relationship between the microstructure of fibers and additional stress was examined. The results show that the spatial and orientation distributions of fibers are heterogeneous because of the influence of coherent vortices in the flow, which leads to the heterogeneity of the additional stress. The degree of heterogeneity increases with the increasing of St number and fiber aspect ratio. The fibers in the flow make the momentum loss thickness of the mixing layer thicker and accelerate the vorticity dispersion.The project supported by the Doctoral Program of Higher Education in China (20030335001)  相似文献   

12.
张洪泉 《力学学报》1993,25(3):356-361
对平面混合层绕流圆柱时的旋涡脱落和流动结构进行了数值研究。方法是用一空间、时间三阶精度的有限差分格式解二维不可压Navier-Stokes方程和连续性方程。计算时雷诺数Re取为1000,混合层速度比Ra从0到1,混合层动量厚度θ由0.2到2。  相似文献   

13.
平面湍流混合层的准相似性理论   总被引:2,自引:0,他引:2  
本文应用周培源的理论,给出了不可压缩平面湍流混合层的一级近似解,我们考虑连续性方程,平均运动方程和二阶脉动速度关联方程,忽略二阶脉动速度关联方程中的三阶关联项,并引进自模拟假设,得到了和实验符合的平均速度,二阶脉动速度关联项和湍流微尺度等的理论计算结果。  相似文献   

14.
During the mixing of viscous incompressible flows with different velocities, in the vicinity of a trailing edge an interaction region with a three-layer structure is formed, similar to that in the case of symmetric shedding with equal velocities. The boundary layers developing on the upper and lower sides of the airfoil form a viscous mixing layer, or vortex sheet, which separates the flows downstream of the trailing edge. The boundary value problem corresponding to the flow in the viscous sublayer in the vicinity of the trailing edge of a flat plate is solved for high Reynolds numbers using an efficient numerical method for solving the equations of asymptotic interaction theory.  相似文献   

15.
The accurate treatment of finite-rate chemistry is possible by the application of stochastic turbulence models which generalize Reynolds-averaged Navier–Stokes equations. Usually, one considers linear stochastic equations. In this way, fluctuations are generated by uncorrelated forces and relax with a frequency that is independent of the actual fluctuation. It has been proved that such linear equations are well appropriate to simulate near-equilibrium flows. However, the inapplicability or unfeasibility of other methods also results in a need for stochastic methods for more complex flow simulations. Their construction requires an extension of the simple mechanism of linear stochastic equations. Two ways to perform this are investigated here. The first way is the construction of a stochastic model for velocities where the relaxation frequency depends on the actual fluctuation. This is a requirement to involve relevant mixing variations due to large-scale flow structures. The stochastic model developed is applied to the simulation of convective boundary layer turbulence. Comparisons with the results of measurements provide evidence for its good performance and the advantages compared to existing methods. The second way presented here is the construction of scalar equations which involve memory effects regarding to both the stochastic forcing and relaxation of fluctuations. This allows to overcome shortcomings of existing stochastic methods. The model predictions are shown to be in excellent agreement with the results of the direct numerical simulation of scalar mixing in stationary, homogeneous and isotropic turbulence. The consideration of memory effects is found to be essential to simulate correctly the evolution of scalar fields within the first stage of mixing.  相似文献   

16.
A new method of stabilizing low-order, proper orthogonal decomposition based reduced-order models of the Navier?CStokes equations is proposed. Unlike traditional approaches, this method does not rely on empirical turbulence modeling or modification of the Navier?CStokes equations. It provides spatial basis functions different from the usual proper orthogonal decomposition basis function in that, in addition to optimally representing the solution, the new proposed basis functions also provide stable reduced-order models. The proposed approach is illustrated with two test cases: two-dimensional flow inside a square lid-driven cavity and a two-dimensional mixing layer.  相似文献   

17.
Summary When a light fluid is injected at a steady rate at the roof of a tunnel in which there is a turbulent main flow of a heavier fluid, the turbulent diffusion of the light layer may be considerably reduced due to buoyancy. For large Richardson numbers turbulent mixing ceases altogether.The equations of motion and diffusion were solved by introducing an eddy diffusivity which is dependant on the Richardson number. Experiments were made on brine (floor) layers in a water flow, and on methane (roof) layers in an air flow. Results were essentially in agreement with theory.The motion and mixing of the layers depend mainly on the inclination of the tunnel and on a dimensionless combination of main-flow velocity, gravity, relative density difference, volume input rate of layer fluid, and tunnel width. Values of the dimensionless parameter are suggested to overcome the effects of buoyancy on mixing, and to prevent layers from moving up a slope against the main flow.  相似文献   

18.
Transport of dissolved species by a carrier fluid in a porous medium comprises advection and diffusion/dispersion processes. Hydrodynamic dispersion is commonly characterized by an empirical relationship, in which the dispersion mechanism is described by contributions of molecular diffusion and mechanical dispersion expressed as a function of the molecular Peclét number. Mathematically these two phenomena are modeled by a constant diffusion coefficient and by velocity dependent dispersion coefficients, respectively. Here, the commonly utilized Bear--Scheidegger dispersion model of linear proportionality between mechanical dispersion and velocity, and the more complicated Bear--Bachmat model derived on a streamtube array model porous medium and better describing observed dispersion coefficients in the moderate molecular Peclét number range, will be considered. Analyzing the mixing flow of two parallelly flowing confluent fluids with different concentrations of a dissolved species within the frames of boundary layer theory one has to deal with transverse mixing only. With the Boussinesq approximation being adopted approximate analytical solutions of the corresponding boundary layer system of equations show that there is no effect of density coupling on concentration distributions across the mixing layer in the pure molecular diffusion regime case. With the Peclét number of the oncoming flow growing beyond unity, density coupling has an increasing influence on the mixing zone. When the Peclét number grows further this influence is successively reduced until its disappearance in the pure mechanical dispersion regime.  相似文献   

19.
混合层强化混合的数值研究   总被引:2,自引:0,他引:2  
罗纪生  肖左利 《力学学报》2002,34(2):168-176
受 Wang & Fiedler(1997)的实验的启发,采用高阶精度的差分格式,通过数值模拟的方法,研究了二维混合层及限于两平板间的二维混合层(二维受限混合层)入口处加振动对提高混合层混合效率的作用.计算结果表明:对二维混合层,振动的频率越低,在混合层中产生的大尺度涡结构的尺度越大,在频率很低时,涡具有相似性;对限于两平板间的二维混合层,在一定的振动频率下,混合层中产生的涡较大而且破碎得也较好,这将有利于混合.这一结论与 Wang & Fiedler(1997)的实验观测到的结果是一致的.  相似文献   

20.
This paper details the influence of the magnitude of imposed inflow fluctuations on Large Eddy Simulations of a spatially developing turbulent mixing layer originating from laminar boundary layers. The fluctuations are physically-correlated, and produced by an inflow generation technique. The imposed high-speed side boundary layer fluctuation magnitude is varied from a low-level, up to a magnitude sufficiently high that the boundary layer can be considered, in a mean sense, as nominally laminar. Cross-plane flow visualisation shows that each simulation contains streamwise vortices in the laminar and turbulent regions of the mixing layer. Statistical analysis of the secondary shear stress reveals that mixing layers originating from boundary layers with low-level fluctuations contain a spatially stationary streamwise structure. Increasing the high-speed side boundary layer fluctuation magnitude leads to a weakening of this stationary streamwise structure, or its removal from the flow entirely. The mixing layer growth rate reduces with increasing initial fluctuation level. These findings are discussed in terms of the available experimental data on mixing layers, and recommendations for both future experimental and numerical research into the mixing layer are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号